Austenite grain growth behavior of a GCr15 bearing steel cast billet in the homogenization heat treatment process

Abstract

Isothermal homogenization heat treatments for a GCr15 bearing steel cast billet were performed at temperatures of 1000–1250 °C and holding times of 30–180 min. The grain size of austenite was measured with a metallographic microscope through the linear intercept method. Experimental results show that the grain size of austenite increases with the increase in heating temperature and holding time. The relationship between grain size and homogenization cycles was established. The homogeneity of the cast billet has an obvious effect on the austenite grain size distributions. Small and large grains were observed in the high- and low-concentration regions, respectively. The log-normal function can describe the grain size distributions more accurately than other functions after heating at low temperatures for short times. However, the Weibull function fits the grain size data well when the heating temperatures and holding times are improved.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    R.J. Shipley: Failure analysis and prevention. In ASM Handbook, Vol. 11, 9th ed.; ASTM International, West Conshohocken, USA, 1990; p. 508.

    Google Scholar 

  2. 2.

    V.M. Blinov, I.V. Doronin, A.E. Antoschenkov, and Yu.A. Lukina: Deformability of ShKh15 steel during cold plastic deformation. Russ. Metall. 2, 140 (2007).

    Article  Google Scholar 

  3. 3.

    V.I. Antipov, L.V. Vinogradov, E.M. Lazarev, Yu.E. Mukhina, and A.E. Antoshchenkov: Increasing the hardness of ShKh15 steel in its products. Russ. Metall. 4, 334 (2009).

    Article  Google Scholar 

  4. 4.

    R. Kiessling and S. Beckström: Electron probe x-ray microanalysis. Jernkontorets Ann. 145, 255 (1961).

    Google Scholar 

  5. 5.

    T.I. Malinovskaya, A.H. Kurasov, G.V. Glaskova, and Ya.I. Spektor: Effect of homogenization of dendritic segregation of chromium and manganese in steel ShKh15. Met. Sci. Heat Treat. 17, 609 (1975).

    Article  Google Scholar 

  6. 6.

    O. Bode: Contribution to the understanding and susceptibility to macrosegregation in the rolling bearing steel 100Cr6 through the use of electromagnetic stirring. Ph.D. Thesis, Technical University of Clausthal, Germany, 1996.

  7. 7.

    O. Bode, K. Schwerdtfeger, H.G. Geck, and F. Höfer: Influence of casting parameters on void volume and centre segregation in continuously cast 100Cr6 blooms. Ironmaking Steelmaking 35, 137 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    S.I. Gubenko and A.M. Galkin: Nature of red-shortness of steel. Met. Sci. Heat Treat. 26, 732 (1984).

    Article  Google Scholar 

  9. 9.

    P.M. Gerashchenko, V.T. Zhadan, I.L. Shturgunov, V.V. Zaikin, and V.M. Kapsheeva: Influence of heating schedules before rolling on properties and structure of ShKh15 steel. Steel USSR 17, 224 (1987).

    Google Scholar 

  10. 10.

    N. Capatina, M. Teodorescu, E. Taru, and A. Udvuleanu: Research on the machinability of bearing steels. Bull. Univ. Galatina Part 5, 39 (1979).

    Google Scholar 

  11. 11.

    W. Yang, A. Hu, and Z. Sun: Effect of austenite grain size on strain enhanced transformation in a low carbon steel. Acta Metall. Sin. 36 (10), 1055 (2000).

    CAS  Google Scholar 

  12. 12.

    H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing. Mater. Sci. Eng., A 367, 152 (2004).

    Article  Google Scholar 

  13. 13.

    H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: The evolution of ultrafine ferrite formation through dynamic strain-induced transformation. Mater. Sci. Eng., A 371, 343 (2004).

    Article  Google Scholar 

  14. 14.

    D. Han and X. Sun: Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci. 9, 269 (2005).

    Article  Google Scholar 

  15. 15.

    Y. Yin, W. Yang, L. Li, and X. Wang: Microstructure control of hot rolled TRIP steel based on dynamic transformation of undercooled austenite. Acta Metall. Sin. 46 (2), 155 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    C. Yue, L. Zhang, S. Liao, and H. Gao: Kinetic analysis of the austenite grain growth in GCr15 steel. J. Mater. Eng. Perform. 19 (1), 112 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    M. Shirdel, H. Mirzadeh, and M.H. Parsa: Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metall. Mater. Trans. A 45 (11), 5185 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    M. Shirdel, H. Mirzadeh, and M.H. Parsa: Abnormal grain growth in AISI 304L stainless steel. Mater. Charact. 97, 11 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    S.S. Li, Y.H. Liu, Y.L. Song, L.N. Kong, T.J. Li, and R.H. Zhang: Austenitic grain growth behavior during austenization in an aluminum-alloyed 5% Cr–Mo–V steel. Steel Res. Int. 87, 1 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    B.R. Patterson and Y. Liu: Relationship between grain boundary curvature and grain size. Metall. Trans. A 23, 2481 (1992).

    Article  Google Scholar 

  21. 21.

    P. Hellman and M. Hillert: Effect of second-phase particles on grain growth. Scand. J. Metall. 4, 211 (1975).

    CAS  Google Scholar 

  22. 22.

    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, UK, 2004).

    Google Scholar 

  23. 23.

    V.Yu. Novikov: On description of grain growth kinetics. Scr. Mater. 39 (7), 945 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    F.J. Gil and J.A. Planell: Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater. Sci. Eng., A 283, 17 (2000).

    Article  Google Scholar 

  25. 25.

    M. Hillert: On the theory of normal and abnormal grain growth. Acta Metall. 13, 227 (1965).

    CAS  Article  Google Scholar 

  26. 26.

    S.J. Lee and Y.K. Lee: Prediction of austenite grain growth during austenitization of low alloy steels. Mater. Des. 29, 1840 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    J.B. Koo and D.Y. Yoon: Abnormal grain growth in bulk Cu—The dependence on initial grain size and annealing temperature. Metall. Mater. Trans. A 32, 1911 (2001).

    Article  Google Scholar 

  28. 28.

    J.S. Choi and D.Y. Yoon: The temperature dependence of abnormal grain growth and grain boundary faceting in 316L stainless steel. ISIJ Int. 41, 478 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    J.C. Hamilton, D.J. Siegel, I. Daruka, and F. Léonard: Why do grain boundaries exhibit finite facet lengths. Phys. Rev. Lett. 90, 246102 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    N.P. Louat: On the theory of normal grain growth. Acta Metall. 22, 721 (1974).

    CAS  Article  Google Scholar 

  31. 31.

    P. Feltham: Grain growth in metals. Acta Metall. 5, 97 (1957).

    CAS  Article  Google Scholar 

  32. 32.

    Y. He, H. Ding, L. Liu, and K. Shin: Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle. Mater. Sci. Eng., A 429, 236 (2006).

    Article  Google Scholar 

  33. 33.

    D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest: Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics. Acta Metall. 32, 793 (1984).

    CAS  Article  Google Scholar 

  34. 34.

    D. Fan, C. Geng, and L.Q. Chen: Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model. Acta Mater. 45, 1115 (1997).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fuyong Su.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wen, Z., Su, F. et al. Austenite grain growth behavior of a GCr15 bearing steel cast billet in the homogenization heat treatment process. Journal of Materials Research 31, 2105–2113 (2016). https://doi.org/10.1557/jmr.2016.248

Download citation