Plasmon-band subpeak and oxidation of solar-control LaB6 nanoparticles


Near-infrared (NIR) absorption in solar-control LaB6 nanoparticles (NPs) is derived from the localized surface plasmon resonance (LSPR) at 1.3 eV, and accompanies an unclarified subpeak at 1.8 eV. As an origin of this subpeak, a disk-like particle shape of LaB6 NP has recently been proposed, besides the previously-proposed, milling-derived LaO phase. A series of heating experiments at 200–850 °C in air for LaB6 NPs pulverized with different media beads have been made, followed by x-ray diffraction and transmission electron microscopy observations, to clarify that LaB6 NPs oxidizes to amorphous phases B2O3 and La–B–O at 450–600 °C, and crystallize to LaB3O6 at 650–750 °C, without forming LaO or La2O3. Dielectric functions of LaO have been derived by first-principles calculations using sX-LDA, and Mie scattering calculations have been made for various sizes, shapes, and the ensembles, showing that LaO NPs, if existed, should exhibit an excessively-broadened absorption band with a blunt LSPR peak at 2.1 eV buried in several interband-transition absorptions at 1.2–4.0 eV. These analyses confirm that the observed 1.8 eV subpeak could not originate from LaO and support the nonspherical shape of NPs as the origin of the subpeak.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    M. Trenary: Surface science studies of metal hexaborides. Sci. Technol. Adv. Mater. 13, 023002 (2012).

    Article  Google Scholar 

  2. 2.

    H. Takeda, H. Kuno, and K. Adachi: Film for cutting off heat-rays and a coating liquid for forming the same. US Patents 6060154, May 9, 2000; 6277187, August 21, 2001; and 6221945, April 24, 2001.

  3. 3.

    H. Takeda, H. Kuno, and K. Adachi: Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J. Am. Ceram. Soc. 91, 2897 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    W.K. Fisher: Polyvinylbutyral blends with lanthanum hexaboride for use in laminated solar control glazing. In Proc. Glass Processing Days 2005, Tampere, June 17–20, 2005; p. 110.

  5. 5.

    K. Adachi, M. Miratsu, and T. Asahi: Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J. Mater. Res. 25 (3), 510 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Y.F. Yuan, L. Zhang, L.J. Hu, W. Wang, and G.H. Min: Size effect of added LaB6 particles on optical properties of LaB6/polymer composites. J. Solid State Chem. 184, 3364 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    F. Jiang, Y.K. Leong, M. Saunders, M. Martyniuk, L. Faraone, A. Keating, and J.M. Dell: Uniform dispersion of lanthanum hexaboride nanoparticles in a silica thin film: Synthesis and optical properties. ACS Appl. Mater. Interfaces 4 (11), 5833 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    H. Tang, Y. Su, J. Tan, T. Hu, J. Gong, and L. Xiao: Optical properties and thermal stability of poly(vinyl butyral) thin films embedded with LaB6@SiO2 core-shell nanoparticles. Superlattices Microstruct. 75, 908 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    C-J. Chen and D-H. Chen: Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material. Chem. Eng. J. 180, 337 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    B-H. Lai and D-H. Chen: LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells. Acta Biomater. 9 (7), 7556 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    S. Yoshio, K. Maki, and K. Adachi: Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations. J. Chem. Phys. 144, 234702 (2016).

    Article  Google Scholar 

  12. 12.

    E. Kauer: Optical and electrical properties of LaB6. Phys. Lett. 7, 171 (1963).

    CAS  Article  Google Scholar 

  13. 13.

    S. Kimura, T. Nanba, M. Tomikawa, S. Kunii, and T. Kasuya: Electronic structure of rare-earth hexaborides. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 12196 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    S. Kimura, T. Nanba, S. Kunii, and T. Kasuya: Low-energy optical excitation in rare-earth hexaborides. Phys. Rev. B: Condens. Matter Mater. Phys. 50, 1406 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    J.M. Leger, P. Aimonio, J. Loriers, P. Dordor, and B. Coqblin: Transport properties of SmO. Phys. Lett. 80A, 325 (1980).

    CAS  Article  Google Scholar 

  16. 16.

    K. Machida and K. Adachi: Particle shape inhomogeneity and plasmon band broadening of solar-control LaB6 nanoparticles. J. Appl. Phys. 118, 013103 (2015).

    Article  Google Scholar 

  17. 17.

    G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    D.M. Bylander and L. Kleinman: Good semiconductor band gaps with a modified local-density approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 7868 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    A. Seidl, A. Görling, P. Vogl, J.A. Majewski, and M. Levy: Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B: Condens. Matter Mater. Phys. 53, 3764 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    C.F. Bohren and D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

    Google Scholar 

  24. 24.

    X.H. Ji, Q.Y. Zhang, J.Q. Xu, and Y.M. Zhao: Rare-earth hexaborides nanostructures: Recent advances in materials, characterization and investigations of physical properties. Prog. Solid State Chem. 39, 51 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    T.M. Mattox, A. Agrawal, and D.J. Milliron: Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) Nanocrystals. Chem. Mater. 27 (19), 6620 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    G. Samsonov: Handbook of Refractory Compounds (Springer US, IFI/Plenum, New York, 1980).

    Google Scholar 

  27. 27.

    E.M. Levin, C.R. Robbins, and J.L. Waring: Immiscibility and the system lanthanum oxide-boric oxide. J. Am. Ceram. Soc. 44 (2), 89 (1961).

    Article  Google Scholar 

  28. 28.

    C.H. Wen, T.M. Wu, and W.C.J. Wu: Oxidation kinetics of LaB6 in oxygen rich conditions. J. Eur. Ceram. Soc. 24, 3235 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    J.K. Sonber, K. Sairam, T.S.R.Ch. Murthy, A. Nagaraj, C. Subramanian, and R.C. Hubli: Synthesis, densification and oxidation study of lanthanum hexaboride. J. Eur. Ceram. Soc. 34 (5), 1155 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    J.M. Leger, N. Yacoubi, and J. Loriers: Synthesis of rare earth monoxides. J. Solid State Chem. 36, 261 (1981).

    CAS  Article  Google Scholar 

Download references


The authors wish to show their sincere appreciation to Mr. Hideaki Fukuyama and Mr. Takehide Morimoto for experimental assistances.

Author information



Corresponding author

Correspondence to Kenji Adachi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machida, K., Okada, M., Yoshio, S. et al. Plasmon-band subpeak and oxidation of solar-control LaB6 nanoparticles. Journal of Materials Research 31, 2780–2788 (2016).

Download citation