Effects of the fabrication temperature and oxygen flux on the properties and nitrogen dioxide sensitivity of the tin oxides-tin/graphene hybrid sensor


The 1 nm tin oxides–tin (SnOx–Sn) compound films were thermally evaporated onto the chemical vapor deposition (CVD)-grown graphene films for the improved nitrogen dioxide (NO2) gas sensitivity, and the effects of the fabrication temperature and oxygen (O2) flux on the properties of the SnOx–Sn/graphene hybrid sensors including their composition, morphology, and microstructure as well as NO2 sensitivity were investigated. The composition of the SnOx–Sn compound films exhibited strong dependence on the fabrication temperature and O2 flux which could be ascribed to the hybrid effect of the desorption of the oxygen functional groups on the graphene and oxidation of the graphene and Sn. Such combining effects also demonstrated tremendous influence on the SnOx–Sn film morphology, in which the enhanced desorption of the oxygen functional groups on the graphene together with the oxidation of Sn with increasing fabrication temperature would facilitate the formation of large grain-sized and discontinuous films while the increasing O2 flux showed the opposite effects. Meanwhile, the crystallization of the SnOx–Sn compound films was promoted and deteriorated with the increasing temperature and O2 flux, respectively. The SnOx–Sn film morphology played vital role in NO2 gas sensitivity at room temperature, and the mechanism responsible for that was also discussed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3


  1. 1.

    Y. Zheng, W. Jang, and P. Yao: Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens. Actuators B 156 (2), 723 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    J. Liu, F. Meng, Y. Zhong, J. Liu, G. Chen, Y. Wan, K. Qian, and S.M. Thalluri: Assembly, formation mechanism, and enhanced gas-sensing properties of porous and hierarchical SnO2 hollow nanostructures. J. Mater. Res. 25 (10), 1992 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    R. Xing, L. Xu, Y. Zhu, J. Song, W. Qin, and Q. Dai: Three-dimensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance. Sens. Actuators B 188, 235 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    V. Van Quang, N. Van Dung, N.S. Trong, N.D. Hoa, N. Van Duy, and N. Hieu: Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105 (1), 013107 (2014).

    Article  CAS  Google Scholar 

  5. 5.

    J.D. Prades, A. Cirera, and J.R. Morante: Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. Sens. Actuators B 142 (1), 179 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Z. Zhang, K. Huang, F. Yuan, and C. Xie: Gas-sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on SnO2 films. J. Mater. Res. 29 (1), 139 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    L. Wang, H. Dou, F. Li, J. Deng, Z. Lou, and T. Zhang: Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sens. Actuators B 183, 467 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    J.Y. Son, S.J. Lim, J.H. Cho, W.K. Seong, and H. Kim: Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. Appl. Phys. Lett. 93 (5), 053109 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, and J.P. Li: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84 (18), 3654 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    S-W. Choi, J.Y. Park, and S.S. Kim: Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26 (14), 1662 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, and K.J. Choi: Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93 (26), 263103 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    J.X. Wang, X.W. Sun, Y. Yang, and C.M.L. Wu: N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology 20 (46), 465501 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    L. Chen, S. Bai, G. Zhou, D. Li, A. Chen, and C.C. Liu: Synthesis of ZnO–SnO2 composites by microemulsion and sensing properties for NO2. Sens. Actuators B 134 (2), 360 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, and F. Liu: UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B 162 (1), 82 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    A. Sharma, M. Tomar, and V. Gupta: Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sens. Actuators B 181, 735 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, and K. Shi: Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7 (35), 14643 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Y-G. Jang, W-S. Kim, D-H. Kim, and S-H. Hong: Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties. J. Mater. Res. 26 (17), 2322 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    S. Hemmati, A.A. Firooz, A.A. Khodadadi, and Y. Mortazavi: Nanostructured SnO2–ZnO sensors: Highly sensitive and selective to ethanol. Sens. Actuators B 160 (1), 1298 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    N.D. Khoang, N. Van Duy, N.D. Hoa, and N. Van Hieu: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B 174, 594 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    J. Guo, J. Zhang, H. Gong, D. Ju, and B. Cao: Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B 226, 266 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    B. Wang, Y. Wang, Y. Lei, S. Xie, N. Wu, Y. Gou, C. Han, Q. Shia, and D. Fang: Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C. 4, 295 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    X. Kuanga, T. Liua, D. Shi, W. Wang, M. Yang, S. Hussain, X. Peng, and F. Pan: Hydrothermal synthesis of hierarchical SnO2 nanostructures made of superfine nanorods for smart gas sensor. Appl. Surf. Sci. 364, 371 (2016).

    Article  CAS  Google Scholar 

  23. 23.

    B. Zhang, W. Fu, H. Li, X. Fu, Y. Wang, H. Bala, X. Wang, G. Sun, J. Cao, and Z. Zhang: Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl. Surf. Sci. 363, 560 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    W. Tan, Q. Yu, X. Ruan, and X. Huang: Design of SnO2-based highly sensitive ethanol gas sensor based on quasi molecular-cluster imprinting mechanism. Sens. Actuators B 212, 47 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    D. Zhang, A. Liu, H. Chang, and B. Xia: Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5 (4), 3016 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    K-C. Lee, Y-J. Chiang, Y-C. Lin, and F-M. Pan: Effects of PdO decoration on the sensing behavior of SnO2 toward carbon monoxide. Sens. Actuators B 226, 457 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Bing, Y. Zeng, S. Feng, L. Qiao, Y. Wang, and W. Zheng: Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection. Sens. Actuators B 227, 362 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, and D. Li: Synthesis of SnO2–CuO heterojunction using electrospinning and application in detecting of CO. Sens. Actuators B 226, 96 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    N. Ma, K. Suematsu, M. Yuasa, T. Kida, and K. Shimanoe: Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces 7 (10), 5683 (2015).

    Article  CAS  Google Scholar 

  30. 30.

    N. Yamazoe, G. Sakai, and K. Shimanoe: Oxide semiconductor gas sensors. Catal. Surv. Asia 7 (1), 63 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6 (3), 183 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    F. Schedin, A.K. Geim, S.V. Morozov, D.W. Hill, P. Blake, and M.I. Katsnelson: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6 (9), 652 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    D. Xu, I. Skachko, A. Barker, and E.Y. Andrei: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491 (2008).

    Article  CAS  Google Scholar 

  34. 34.

    K.S. Novosetov, A.K. Geim, S.Y. Morozov, D. Jiang, M.L. Katsnelson, and I.N. Grigorieva: Two-dimensional gas of massless dirac fermions in graphene. Nature 438 (7065), 197 (2005).

    Article  CAS  Google Scholar 

  35. 35.

    G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A.A. Balandin: Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95 (3), 0333103 (2009).

    Google Scholar 

  36. 36.

    F. Yavari, E. Castillo, H. Gullapalli, P.M. Ajayan, and N. Koratkar: High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 100 (20), 203120 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    A. Kakatkar, T.S. Abhilash, R. De Alba, J.M. Parpia, and H.G. Craighead: Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26 (12), 125502 (2015).

    Article  CAS  Google Scholar 

  38. 38.

    E. Nagelli, R. Naik, Y. Xue, Y. Gao, M. Zhang, and L. Dai: Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24 (44), 444010 (2013).

    Article  CAS  Google Scholar 

  39. 39.

    H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, and H. Xie: High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films. Appl. Phys. Lett. 105 (3), 033107 (2014).

    Article  CAS  Google Scholar 

  40. 40.

    K. Maehashi, Y. Sofue, S. Okamoto, Y. Ohno, K. Inouce, and K. Matsumoto: Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens. Actuators B 187, 45 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, and V. Palermo: Graphene oxide as a practical solution to high sensitivity gas sensing. J. Phys. Chem. C 117 (20), 10683 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    W. Yuan, A. Liu, L. Huang, C. Li, and G. Shi: High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25 (5), 766 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    G. Lu, L.E. Ocola, and J. Chen: Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20 (44), 445502 (2009).

    Article  CAS  Google Scholar 

  44. 44.

    B. Lee, S.Y. Park, H.C. Kim, K.J. Cho, E.M. Vogel, and M.J. Kim: Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl. Phys. Lett. 92 (20), 203102 (2008).

    Article  CAS  Google Scholar 

  45. 45.

    Y. Xuan, Y.Q. Wu, T. Shen, M. Qi, M.A. Capano, and J.A. Cooper: Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92 (1), 013101 (2008).

    Article  CAS  Google Scholar 

  46. 46.

    S. Banerjee and S.S. Wong: Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B 106 (47), 12144 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    X. Wang, S.M. Tabakman, and H. Dai: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130 (26), 8152 (2008).

    CAS  Article  Google Scholar 

  48. 48.

    H. Mu, K. Wang, Z. Zhang, and H. Xie: Formaldehyde graphene gas sensors modified by thermally evaporated tin oxides and tin compound films. J. Phys. Chem. C 119, 10102–10108 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, and Y.H. Wu: The effect of vacuum annealing on graphene. J. Raman Spectrasc. 41 (5), 479 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    E.X. Zhang, A.K.M. Newaz, B. Wang, C.X. Zhang, D.M. Fleetwood, and K.I. Bolotin: Ozone-exposure and annealing effects on graphene-on-SiO2 transistors. Appl. Phys. Lett. 101 (12), 121601 (2012).

    Article  CAS  Google Scholar 

  51. 51.

    F. Alzina, H. Tao, J. Moser, Y. García, A. Bachtold, and C.M. Sotomayor-Torres: Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy. Phys. Rev. B 82 (7), 075422 (2010).

    Article  CAS  Google Scholar 

  52. 52.

    Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh: Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene. Appl. Phys. Lett. 103 (6), 063107 (2013).

    Article  CAS  Google Scholar 

  53. 53.

    M.F. Al-Kuhaili: Characterization of thin films produced by the thermal evaporation of silver oxide. J. Phys. D: Appl. Phys. 40 (9), 2847 (2007).

    CAS  Article  Google Scholar 

  54. 54.

    M. Adamik, P.B. Barna, I. Tomov, and D. Biro: Problems of structure evolution in polycrystalline films: Correlation between grain morphology and texture formation mechanisms. Phys. Status Solidi A 145 (2), 275 (1994).

    CAS  Article  Google Scholar 

  55. 55.

    N. Barsan and U.J. Weimar: Conduction model of metal oxide gas sensors. J. Electroceram. 7 (3), 143 (2001).

    CAS  Article  Google Scholar 

  56. 56.

    S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, and M. Olivo: Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134 (10), 4905 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, and M. Weinert: Indium-doped SnO2 nanoparticle–graphene nanohybrids: Simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1 (14), 4462 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, and N. Dilawar: Faster response of NO2 sensing in graphene–WO3 composites. Nanotechnology 23 (20), 205501 (2012).

    Article  CAS  Google Scholar 

  59. 59.

    G. Zhang and M. Liu: Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators B 69 (1), 144 (2000).

    CAS  Article  Google Scholar 

  60. 60.

    L. Zhao, M. Choi, H.S. Kim, and S.H. Hong: The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials. Nanotechnology 18 (44), 445501 (2007).

    Article  CAS  Google Scholar 

  61. 61.

    Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z.B. He, Y.L. Cao, G.D. Yuan, H.S. Song, L.M. Chen, L.B. Luo, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee: Incorporation of graphene in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 3482 (2010).

    CAS  Article  Google Scholar 

  62. 62.

    H. Zhang, J. Feng, T. Fei, S. Liu, and T. Zhang: SnO2 nanoparticles-reduced graphene oxide composites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472 (2014).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Haichuan Mu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, H., Wang, K. & Xie, H. Effects of the fabrication temperature and oxygen flux on the properties and nitrogen dioxide sensitivity of the tin oxides-tin/graphene hybrid sensor. Journal of Materials Research 31, 1993–2003 (2016). https://doi.org/10.1557/jmr.2016.242

Download citation