Abstract
The 1 nm tin oxides–tin (SnOx–Sn) compound films were thermally evaporated onto the chemical vapor deposition (CVD)-grown graphene films for the improved nitrogen dioxide (NO2) gas sensitivity, and the effects of the fabrication temperature and oxygen (O2) flux on the properties of the SnOx–Sn/graphene hybrid sensors including their composition, morphology, and microstructure as well as NO2 sensitivity were investigated. The composition of the SnOx–Sn compound films exhibited strong dependence on the fabrication temperature and O2 flux which could be ascribed to the hybrid effect of the desorption of the oxygen functional groups on the graphene and oxidation of the graphene and Sn. Such combining effects also demonstrated tremendous influence on the SnOx–Sn film morphology, in which the enhanced desorption of the oxygen functional groups on the graphene together with the oxidation of Sn with increasing fabrication temperature would facilitate the formation of large grain-sized and discontinuous films while the increasing O2 flux showed the opposite effects. Meanwhile, the crystallization of the SnOx–Sn compound films was promoted and deteriorated with the increasing temperature and O2 flux, respectively. The SnOx–Sn film morphology played vital role in NO2 gas sensitivity at room temperature, and the mechanism responsible for that was also discussed.
This is a preview of subscription content, access via your institution.



References
- 1.
Y. Zheng, W. Jang, and P. Yao: Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens. Actuators B 156 (2), 723 (2011).
- 2.
J. Liu, F. Meng, Y. Zhong, J. Liu, G. Chen, Y. Wan, K. Qian, and S.M. Thalluri: Assembly, formation mechanism, and enhanced gas-sensing properties of porous and hierarchical SnO2 hollow nanostructures. J. Mater. Res. 25 (10), 1992 (2010).
- 3.
R. Xing, L. Xu, Y. Zhu, J. Song, W. Qin, and Q. Dai: Three-dimensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance. Sens. Actuators B 188, 235 (2013).
- 4.
V. Van Quang, N. Van Dung, N.S. Trong, N.D. Hoa, N. Van Duy, and N. Hieu: Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105 (1), 013107 (2014).
- 5.
J.D. Prades, A. Cirera, and J.R. Morante: Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. Sens. Actuators B 142 (1), 179 (2009).
- 6.
Z. Zhang, K. Huang, F. Yuan, and C. Xie: Gas-sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on SnO2 films. J. Mater. Res. 29 (1), 139 (2014).
- 7.
L. Wang, H. Dou, F. Li, J. Deng, Z. Lou, and T. Zhang: Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sens. Actuators B 183, 467 (2013).
- 8.
J.Y. Son, S.J. Lim, J.H. Cho, W.K. Seong, and H. Kim: Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. Appl. Phys. Lett. 93 (5), 053109 (2008).
- 9.
Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, and J.P. Li: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84 (18), 3654 (2004).
- 10.
S-W. Choi, J.Y. Park, and S.S. Kim: Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26 (14), 1662 (2011).
- 11.
M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, and K.J. Choi: Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93 (26), 263103 (2008).
- 12.
J.X. Wang, X.W. Sun, Y. Yang, and C.M.L. Wu: N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology 20 (46), 465501 (2009).
- 13.
L. Chen, S. Bai, G. Zhou, D. Li, A. Chen, and C.C. Liu: Synthesis of ZnO–SnO2 composites by microemulsion and sensing properties for NO2. Sens. Actuators B 134 (2), 360 (2008).
- 14.
G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, and F. Liu: UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B 162 (1), 82 (2012).
- 15.
A. Sharma, M. Tomar, and V. Gupta: Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sens. Actuators B 181, 735 (2013).
- 16.
S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, and K. Shi: Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7 (35), 14643 (2015).
- 17.
Y-G. Jang, W-S. Kim, D-H. Kim, and S-H. Hong: Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties. J. Mater. Res. 26 (17), 2322 (2011).
- 18.
S. Hemmati, A.A. Firooz, A.A. Khodadadi, and Y. Mortazavi: Nanostructured SnO2–ZnO sensors: Highly sensitive and selective to ethanol. Sens. Actuators B 160 (1), 1298 (2011).
- 19.
N.D. Khoang, N. Van Duy, N.D. Hoa, and N. Van Hieu: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B 174, 594 (2012).
- 20.
J. Guo, J. Zhang, H. Gong, D. Ju, and B. Cao: Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B 226, 266 (2016).
- 21.
B. Wang, Y. Wang, Y. Lei, S. Xie, N. Wu, Y. Gou, C. Han, Q. Shia, and D. Fang: Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C. 4, 295 (2016).
- 22.
X. Kuanga, T. Liua, D. Shi, W. Wang, M. Yang, S. Hussain, X. Peng, and F. Pan: Hydrothermal synthesis of hierarchical SnO2 nanostructures made of superfine nanorods for smart gas sensor. Appl. Surf. Sci. 364, 371 (2016).
- 23.
B. Zhang, W. Fu, H. Li, X. Fu, Y. Wang, H. Bala, X. Wang, G. Sun, J. Cao, and Z. Zhang: Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl. Surf. Sci. 363, 560 (2016).
- 24.
W. Tan, Q. Yu, X. Ruan, and X. Huang: Design of SnO2-based highly sensitive ethanol gas sensor based on quasi molecular-cluster imprinting mechanism. Sens. Actuators B 212, 47 (2015).
- 25.
D. Zhang, A. Liu, H. Chang, and B. Xia: Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5 (4), 3016 (2015).
- 26.
K-C. Lee, Y-J. Chiang, Y-C. Lin, and F-M. Pan: Effects of PdO decoration on the sensing behavior of SnO2 toward carbon monoxide. Sens. Actuators B 226, 457 (2016).
- 27.
Y. Bing, Y. Zeng, S. Feng, L. Qiao, Y. Wang, and W. Zheng: Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection. Sens. Actuators B 227, 362 (2016).
- 28.
S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, and D. Li: Synthesis of SnO2–CuO heterojunction using electrospinning and application in detecting of CO. Sens. Actuators B 226, 96 (2016).
- 29.
N. Ma, K. Suematsu, M. Yuasa, T. Kida, and K. Shimanoe: Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces 7 (10), 5683 (2015).
- 30.
N. Yamazoe, G. Sakai, and K. Shimanoe: Oxide semiconductor gas sensors. Catal. Surv. Asia 7 (1), 63 (2003).
- 31.
A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6 (3), 183 (2007).
- 32.
F. Schedin, A.K. Geim, S.V. Morozov, D.W. Hill, P. Blake, and M.I. Katsnelson: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6 (9), 652 (2007).
- 33.
D. Xu, I. Skachko, A. Barker, and E.Y. Andrei: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491 (2008).
- 34.
K.S. Novosetov, A.K. Geim, S.Y. Morozov, D. Jiang, M.L. Katsnelson, and I.N. Grigorieva: Two-dimensional gas of massless dirac fermions in graphene. Nature 438 (7065), 197 (2005).
- 35.
G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A.A. Balandin: Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95 (3), 0333103 (2009).
- 36.
F. Yavari, E. Castillo, H. Gullapalli, P.M. Ajayan, and N. Koratkar: High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 100 (20), 203120 (2012).
- 37.
A. Kakatkar, T.S. Abhilash, R. De Alba, J.M. Parpia, and H.G. Craighead: Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26 (12), 125502 (2015).
- 38.
E. Nagelli, R. Naik, Y. Xue, Y. Gao, M. Zhang, and L. Dai: Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24 (44), 444010 (2013).
- 39.
H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, and H. Xie: High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films. Appl. Phys. Lett. 105 (3), 033107 (2014).
- 40.
K. Maehashi, Y. Sofue, S. Okamoto, Y. Ohno, K. Inouce, and K. Matsumoto: Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens. Actuators B 187, 45 (2013).
- 41.
S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, and V. Palermo: Graphene oxide as a practical solution to high sensitivity gas sensing. J. Phys. Chem. C 117 (20), 10683 (2013).
- 42.
W. Yuan, A. Liu, L. Huang, C. Li, and G. Shi: High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25 (5), 766 (2013).
- 43.
G. Lu, L.E. Ocola, and J. Chen: Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20 (44), 445502 (2009).
- 44.
B. Lee, S.Y. Park, H.C. Kim, K.J. Cho, E.M. Vogel, and M.J. Kim: Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl. Phys. Lett. 92 (20), 203102 (2008).
- 45.
Y. Xuan, Y.Q. Wu, T. Shen, M. Qi, M.A. Capano, and J.A. Cooper: Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92 (1), 013101 (2008).
- 46.
S. Banerjee and S.S. Wong: Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B 106 (47), 12144 (2002).
- 47.
X. Wang, S.M. Tabakman, and H. Dai: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130 (26), 8152 (2008).
- 48.
H. Mu, K. Wang, Z. Zhang, and H. Xie: Formaldehyde graphene gas sensors modified by thermally evaporated tin oxides and tin compound films. J. Phys. Chem. C 119, 10102–10108 (2015).
- 49.
Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, and Y.H. Wu: The effect of vacuum annealing on graphene. J. Raman Spectrasc. 41 (5), 479 (2010).
- 50.
E.X. Zhang, A.K.M. Newaz, B. Wang, C.X. Zhang, D.M. Fleetwood, and K.I. Bolotin: Ozone-exposure and annealing effects on graphene-on-SiO2 transistors. Appl. Phys. Lett. 101 (12), 121601 (2012).
- 51.
F. Alzina, H. Tao, J. Moser, Y. García, A. Bachtold, and C.M. Sotomayor-Torres: Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy. Phys. Rev. B 82 (7), 075422 (2010).
- 52.
Y. Mulyana, M. Horita, Y. Ishikawa, Y. Uraoka, and S. Koh: Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene. Appl. Phys. Lett. 103 (6), 063107 (2013).
- 53.
M.F. Al-Kuhaili: Characterization of thin films produced by the thermal evaporation of silver oxide. J. Phys. D: Appl. Phys. 40 (9), 2847 (2007).
- 54.
M. Adamik, P.B. Barna, I. Tomov, and D. Biro: Problems of structure evolution in polycrystalline films: Correlation between grain morphology and texture formation mechanisms. Phys. Status Solidi A 145 (2), 275 (1994).
- 55.
N. Barsan and U.J. Weimar: Conduction model of metal oxide gas sensors. J. Electroceram. 7 (3), 143 (2001).
- 56.
S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, and M. Olivo: Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134 (10), 4905 (2012).
- 57.
S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, and M. Weinert: Indium-doped SnO2 nanoparticle–graphene nanohybrids: Simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1 (14), 4462 (2013).
- 58.
S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, and N. Dilawar: Faster response of NO2 sensing in graphene–WO3 composites. Nanotechnology 23 (20), 205501 (2012).
- 59.
G. Zhang and M. Liu: Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators B 69 (1), 144 (2000).
- 60.
L. Zhao, M. Choi, H.S. Kim, and S.H. Hong: The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials. Nanotechnology 18 (44), 445501 (2007).
- 61.
Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z.B. He, Y.L. Cao, G.D. Yuan, H.S. Song, L.M. Chen, L.B. Luo, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee: Incorporation of graphene in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 3482 (2010).
- 62.
H. Zhang, J. Feng, T. Fei, S. Liu, and T. Zhang: SnO2 nanoparticles-reduced graphene oxide composites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472 (2014).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mu, H., Wang, K. & Xie, H. Effects of the fabrication temperature and oxygen flux on the properties and nitrogen dioxide sensitivity of the tin oxides-tin/graphene hybrid sensor. Journal of Materials Research 31, 1993–2003 (2016). https://doi.org/10.1557/jmr.2016.242
Received:
Accepted:
Published:
Issue Date: