Mixed micelles from synergistic self-assembly of hybrid copolymers with charge difference electrostatic interaction induced re-organization of micelles from hybrid copolymers


Novel mixed micelle was successfully fabricated by the synergistic self-assembly of poly(methacrylate isobutyl polyhedral oligomeric silsesquioxane (POSS)-co-N-isopropylacrylamide-co-oligo(ethylene glycol)methyl ether methacrylate-co-acrylic acid) (P(methacrylate isobutyl (MAPOSS)-co-NIPAM-co-OEGMA-co-AA)) and poly(methacrylate isobutyl POSS-co-N-isopropylacrylamide-co-oligo(ethylene glycol) methyl ether methacrylate-co-2-vinylpyridine) (P(MAPOSS-co-NIPAM-co-OEGMA-co-2VP)). Dynamic light scattering (DLS) and transmission electron microscopy characterizations demonstrate that the formation of mixed micelles is driven by electrostatic interaction. The formation of the mixed micelles was further implied by a simple fluorescence resonance energy transfer based technique. The mixed micelle possesses the biggest size at pH = 7.0, which is attributed to the strongest electrostatic interaction between the two kinds of micelles. The zeta potential under different pH was detected to further investigate the surface charges corroborating the discussions. DLS and UV-vis indicate that the lower critical solution temperature (LCST) is pH dependent. The mixed micelles reach the highest LCST at pH 7.0. The LCST of the mixed micelle can be tuned by adjusting the volume ratio of the two kinds of micelles as well. Moreover, the thermo-responsive behavior of the mixed micelle is absolutely reversible.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    K.K. Upadhyay, H. Agrawal, C. Upadhyay, C. Schatz, J-F. Le Meins, A. Misra, and S. Lecommandoux: Role of block copolymer nanoconstructs in cancer therapy. Crit. Rev. Ther. Drug Carrier Syst. 26 (2), 157 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    O. Ikkala and G. Ten Brinke: Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chem. Commun. 10 (19), 2131 (2004).

    Article  Google Scholar 

  3. 3.

    Y. Yu and A. Eisenberg: Control of morphology through polymer–solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J. Am. Chem. Soc. 119 (35), 8383 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    L. Zhang, K. Yu, and A. Eisenberg: Ion-induced morphological changes in “crew-cut” aggregates of amphiphilic block copolymers. Science 272 (5269), 1777 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    L. Zhang and A. Eisenberg: Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc. 118 (13), 3168 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    H.G. Schild: Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 17 (2), 163 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    J. Rodriguez-Hernandez, F. Chécot, Y. Gnanou, and S. Lecommandoux: Toward “smart” nano-objects by self-assembly of block copolymers in solution. Prog. Polym. Sci. 30, 691 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    K. Soppimath, T. Aminabhavi, A. Dave, S. Kumbar, and W. Rudzinski: Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev. Ind. Pharm. 28 (8), 957 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    V. Pinkrah, M. Snowden, J. Mitchell, J. Seidel, B. Chowdhry, and G. Fern: Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels. Langmuir 19 (3), 585 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    M. Torres-Lugo and N.A. Peppas: Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32 (20), 6646 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    C. He, C. Zhao, X. Guo, Z. Guo, X. Chen, X. Zhuang, S. Liu, and X. Jing: Novel temperature-and pH-responsive graft copolymers composed of poly(L-glutamic acid) and poly(N-isopropylacrylamide). J. Polym. Sci., Part A: Polym. Chem. 46 (12), 4140 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    N. Ayres, C.D. Cyrus, and W.J. Brittain: Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir 23 (7), 3744 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    W. Zhang, L. Shi, R. Ma, Y. An, Y. Xu, and K. Wu: Micellization of thermo-and pH-responsive triblock copolymer of poly(ethylene glycol)-b-poly (4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules 38 (21), 8850 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    C. Pottier, G. Morandi, V. Dulong, Z. Souguir, L. Picton, and D. Le Cerf: Thermo-and pH-sensitive triblock copolymers with tunable hydrophilic/hydrophobic properties. J. Polym. Sci., Part A: Polym. Chem. 53 (22), 2606 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    G. Li, L. Shi, R. Ma, Y. An, and N. Huang: Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers. Angew. Chem. 118 (30), 5081 (2006).

    Article  Google Scholar 

  16. 16.

    Y. Lee, T. Ishii, H. Cabral, H.J. Kim, J.H. Seo, N. Nishiyama, H. Oshima, K. Osada, and K. Kataoka: Inside cover: Charge-conversional polyionic complex micelles—Efficient nanocarriers for protein delivery into cytoplasm. Angew. Chem., Int. Ed. 48 (29), 5220 (2009).

    Article  Google Scholar 

  17. 17.

    S.W. Kuo, P.H. Tung, C.L. Lai, K.U. Jeong, and F.C. Chang: Supramolecular micellization of diblock copolymer mixtures mediated by hydrogen bonding for the observation of separated coil and chain aggregation in common solvents. Macromol. Rapid Commun. 29 (3), 229 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    D. Chen and M. Jiang: Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 38, 494 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    C-H. Hsu, S-W. Kuo, J-K. Chen, F-H. Ko, C-S. Liao, and F-C. Chang: Self-assembly behavior of AB diblock and CD random copolymer mixtures in the solution state through mediated hydrogen bonding. Langmuir 24 (15), 7727 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    N. Kang, M-È. Perron, R.E. Prud’Homme, Y. Zhang, G. Gaucher, and J-C. Leroux: Stereocomplex block copolymer micelles: Core–shell nanostructures with enhanced stability. Nano Lett. 5 (2), 315 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    A.B.E. Attia, Z.Y. Ong, J.L. Hedrick, P.P. Lee, P.L.R. Ee, P.T. Hammond, and Y-Y. Yang: Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interface Sci. 16 (3), 182 (2011).

    Article  Google Scholar 

  22. 22.

    C. Wu, R. Ma, H. He, L. Zhao, H. Gao, Y. An, and L. Shi: Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol. Biosci. 9 (12), 1185 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    H. Hussain, B. Tan, K.Y. Mya, Y. Liu, C. He, and T.P. Davis: Synthesis, micelle formation, and bulk properties of poly(ethylene glycol)-b-poly(pentafluorostyrene)-g-polyhedral oligomeric silsesquioxane amphiphilic hybrid copolymers. J. Polym. Sci., Part A: Polym. Chem. 48 (1), 152 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    B. Tan, H. Hussain, and C. He: Tailoring micelle formation and gelation in (PEG−P(MA-POSS)) amphiphilic hybrid block copolymers. Macromolecules 44 (3), 622 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Zheng, L. Wang, R. Yu, and S. Zheng: Synthesis and self-assembly behavior of organic–inorganic poly(ethylene oxide)-block-poly(MA POSS)-block-poly(N-isopropylacrylamide) triblock copolymers. Macromol. Chem. Phys. 213 (4), 458 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    F. Alves and I. Nischang: A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability. Polym. Chem. 6 (12), 2183 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Xu, M. Chen, J. Xie, C. Li, C. Yang, Y. Deng, C. Yuan, F-C. Chang, and L. Dai: Synthesis, characterization and self-assembly of hybrid pH-sensitive block copolymer containing polyhedral oligomeric silsesquioxane (POSS). React. Funct. Polym. 73 (12), 1646 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le, R.T. Mayadunne, G.F. Meijs, C.L. Moad, and G. Moad: Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31 (16), 5559 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Xu, J. Xie, L. Chen, C. Yuan, Y. Pan, L. Cheng, W. Luo, B. Zeng, and L. Dai: A Novel Hybrid Random Copolymer Poly(MAPOSS-co-NIPAM-co-OEGMA-co-2VP): Synthesis, Characterization, Self-Assembly Behaviors and Multiple Responsive Properties. Macromol. Res. 21, 1338 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    S. Jiwpanich, J-H. Ryu, S. Bickerton, and S. Thayumanavan: Noncovalent encapsulation stabilities in supramolecular nanoassemblies. J. Am. Chem. Soc. 132 (31), 10683 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    R. Dinarvand and A. D’Emanuele: The use of thermoresponsive hydrogels for on-off release of molecules. J. Controlled Release 36 (3), 221 (1995).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (51273164, 51541307 and U1205113), the Scientific and Technological Innovation Platform of Fujian Province (2014H2006) and NCETFJ.

Author information



Corresponding author

Correspondence to Yiting Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Cao, Y., Xie, J. et al. Mixed micelles from synergistic self-assembly of hybrid copolymers with charge difference electrostatic interaction induced re-organization of micelles from hybrid copolymers. Journal of Materials Research 31, 2046–2057 (2016). https://doi.org/10.1557/jmr.2016.226

Download citation