Study on wear mechanism of solid carbide cutting tool in milling CFRP


Carbon fiber reinforced plastic (CFRP) is an expensive composite which has become valuable material as the demand for this composite increased in the industries. It is suitable to be used in automotive, aerospace, and aircraft because of its properties which is stronger than steel and also stiffer than titanium while retaining its lighter weight. However machining of CFRP is a mess to machinist due to its nature which is abrasive. The paper presents the wear mechanism on solid carbide cutting tool during milling CFRP. The wear mechanism is observed under dry and chilled air machining. The machining parameters tested were at cutting speed of 200 m/min with constant feed rate and depth of cut. For both dry and chilled air machining, it is observed that carbide cutting tool experienced abrasive wear which has been influenced by abrasive powdering chips and fibers during milling CFRP. Under microscope and scanning electron microscope, the abrasive wear is represented by shiny and polish area on the cutting tool respectively. This abrasive wear is observed higher under dry machining compared to the chilled air machining which was due to the heat generated during machining. Thus, chilled air has a potential of improving machinability of CFRP by using solid carbide cutting tool.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    W.L. Cong, Z.J. Pei, T.W. Deines, D.F. Liu, and C. Treadwell: Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate. Composites, Part B 52, 303–310 (2013).

    Article  Google Scholar 

  2. 2.

    V. Krishnaraj, A. Prabukarthi, A. Ramanathan, N. Elanghovan, M. Senthil Kumar, R. Zitoune, and J.P. Davim: Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Composites, Part B 43 (4), 1791–1799 (2012).

    Article  Google Scholar 

  3. 3.

    S. Klotz, M. Gerstenmeyer, F. Zanger, and V. Schulze: Influence of clamping systems during drilling carbon fiber reinforced plastics. Procedia CIRP 13, 208–213 (2014).

    Article  Google Scholar 

  4. 4.

    F. Makhdum, V.A. Phadnis, A.S. Roy, and V.V. Silberschmidt: Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics. J. Sound Vibration 333 (23), 5939–5952 (2014).

    Article  Google Scholar 

  5. 5.

    W.L. Cong, Z.J. Pei, T.W. Deines, D.F. Liu, and C. Treadwell: Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force. Ultrasonics 54 (2), 663–675 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    W. Hintze, D. Hartmann, and C. Schütte: Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—An experimental study. Compos. Sci. Technol. 71 (15), 1719–1726 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    E. Uhlmann, F. Sammler, S. Richarz, F. Heitmüller, and M. Bilz: Machining of carbon fibre reinforced plastics. Procedia CIRP 24, 19–24 (2014).

    Article  Google Scholar 

  8. 8.

    M. Henerichs, R. Voß, F. Kuster, and K. Wegener: Machining of carbon fiber reinforced plastics: Influence of tool geometry and fiber orientation on the machining forces. CIRP J. Manuf. Sci. Technol. 9, 136–145 (2015).

    Article  Google Scholar 

  9. 9.

    C.C. Tsao and Y.C. Chiu: Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills. Int. J. Mach. Tools Manuf. 51 (9), 740–744 (2011).

    Article  Google Scholar 

  10. 10.

    E. Brinksmeier, S. Fangmann, and R. Rentsch: Drilling of composites and resulting surface integrity. CIRP Ann. - Manuf. Technol. 60 (1), 57–60 (2011).

    Article  Google Scholar 

  11. 11.

    Y. Karpat, B. Değer, and O. Bahtiyar: Drilling thick fabric woven CFRP laminates with double point angle drills. J. Mater. Process. Technol. 212 (10), 2117–2127 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    K-H. Park, A. Beal, D. Kim, P. Kwon, and J. Lantrip: Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools. Wear 271 (11–12), 2826–2835 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    R. Voß, M. Henerichs, F. Kuster, and K. Wegener: Chip root analysis after machining carbon fiber reinforced plastics (CFRP) at different fiber orientations. Procedia CIRP 14, 217–222 (2014).

    Article  Google Scholar 

  14. 14.

    K. Palanikumar and J. Paulo Davim: Mathematical model to predict tool wear on the machining of glass fibre reinforced plastic composites. Mater. Des. 28 (7), 2008–2014 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    J. Liu, G. Chen, C. Ji, X. Qin, H. Li, and C. Ren: An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP). Int. J. Mach. Tools Manuf. 86, 89–103 (2014).

    Article  Google Scholar 

  16. 16.

    S.W. Kim, D.W. Lee, M.C. Kang, and J.S. Kim: Evaluation of machinability by cutting environments in high-speed milling of difficult-to-cut materials. J. Mater. Process. Technol. 111 (1–3), 256–260 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    A. Shokrani, V. Dhokia, and S.T. Newman: Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int. J. Mach. Tools Manuf. 57, 83–101 (2012).

    Article  Google Scholar 

  18. 18.

    S. Jozić, D. Bajić, and L. Celent: Application of compressed cold air cooling: Achieving multiple performance characteristics in end milling process. J. Cleaner Prod. 100, 325–332 (2015).

    Article  Google Scholar 

  19. 19.

    J. Liu and Y. Kevin Chou: On temperatures and tool wear in machining hypereutectic Al–Si alloys with vortex-tube cooling. Int. J. Mach. Tools Manuf. 47 (3–4), 635–645 (2007).

    Article  Google Scholar 

  20. 20.

    S. Sun, M. Brandt, S. Palanisamy, and M.S. Dargusch: Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti–6Al–4V alloy. J. Mater. Process. Technol. 221, 243–254 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    M.K. Nor Khairusshima, C.H. Che Hassan, A.G. Jaharah, A.K.M. Amin, and A.N. Md Idriss: Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic. Wear 302 (1–2), 1113–1123 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    S. Rawat and H. Attia: Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites. Wear 267 (5–8), 1022–1030 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    D. Iliescu, D. Gehin, M.E. Gutierrez, and F. Girot: Modeling and tool wear in drilling of CFRP. Int. J. Mach. Tools Manuf. 50 (2), 204–213 (2010).

    Article  Google Scholar 

  24. 24.

    X. Wang, P.Y. Kwon, C. Sturtevant, D. Kim, and J. Lantrip: Tool wear of coated drills in drilling CFRP. J. Manuf. Processes 15 (1), 127–135 (2013).

    Article  Google Scholar 

  25. 25.

    A. Warren, A. Nylund, and I. Olefjord: Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int. J. Refract. Met. Hard Mater. 14 (5–6), 345–353 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    K. Palanikumar and J.P. Davim: Assessment of some factors influencing tool wear on the machining of glass fibre-reinforced plastics by coated cemented carbide tools. J. Mater. Process. Technol. 209 (1), 511–519 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    J.C. Campos Rubio, L. José da Silva, W. Wanderson de Oliveira, T. Hallak Panzera, T. Sergio Luiz Moni Ribeiro, and J. Paulo Davim: Investigations on the drilling process of unreinforced and reinforced polyamides using Taguchi method. Composites, Part B 55, 338–344 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    S.R. Karnik, V.N. Gaitonde, J. Campos Rubio, A. Esteves Correia, A.M. Abrão, and J. Paulo Davim: Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater. Des. 29 (9), 1768–1776 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    J. Gisip, R. Gazo, and H.A. Stewart: Effects of cryogenic treatment and refrigerated air on tool wear when machining medium density fiberboard. J. Mater. Process. Technol. 209 (11), 5117–5122 (2009).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nor Khairusshima Muhamad Khairussaleh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhamad Khairussaleh, N.K., Che Haron, C.H. & Ghani, J.A. Study on wear mechanism of solid carbide cutting tool in milling CFRP. Journal of Materials Research 31, 1893–1899 (2016).

Download citation