A new orthorhombic boron phase B51.5–52 obtained by dehydrogenation of “α-tetragonal boron”

Abstract

Recently, a new boron allotrope B52 with orthorhombic structure was theoretically predicted to be more stable than α-tetragonal boron B50. In experiments however, only tetragonal boron phases have been obtained so far. Here, we report for the first time on the preparation of orthorhombic boron phase of B52-type, space group Pnnn, a = 8.894 Å, b = 8.784 Å, c = 5.019 Å, by normal-pressure annealing of α-tetragonal boron, synthesized at high pressures by pyrolysis of decaborane, B10H14. We have investigated temperature-induced structure evolution and thermal desorption of boron samples, which allowed us to regard the structure of mother “α-tetragonal boron” as a boron-rich hydride with composition close to B51.5H7.7. In accordance with density-functional theory calculations, the most preferable sites of hydrogen placement in tetragonal unit cell are 8j and 4g; the tetragonal-to-orthorhombic transition takes place spontaneously upon complete dehydrogenation.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    W. Hayami and S. Otani: First-principles study of the crystal and electronic structures of α-tetragonal boron. J. Solid State Chem. 183 (7), 1521 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Q. Zhu, A.R. Oganov, C.W. Glass, and H.T. Stokes: Constrained evolutionary algorithm for structure prediction of molecular crystals: Methodology and applications. Acta Crystallogr., Sect. B: Struct. Sci. 68, 215 (2012).

    Article  Google Scholar 

  3. 3.

    J.L. Hoard, R.E. Hughes, and D.E. Sands: The structure of tetragonal boron1. J. Am. Chem. Soc. 80, 4507 (1958).

    CAS  Article  Google Scholar 

  4. 4.

    Z. Wang, Y. Shimizu, T. Sasaki, K. Kawaguchi, K. Kimura, and N. Koshizaki: Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation. Chem. Phys. Lett. 368, 663 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    E.A. Ekimov and I.P. Zibrov: High-pressure high-temperature synthesis and structure of α-tetragonal boron. Sci. Technol. Adv. Mater. 12 (5), 055009 (2011).

    Article  Google Scholar 

  6. 6.

    J. Qin, T. Irifune, H. Dekura, H. Ohfuji, N. Nishiyama, L. Lei, and T. Shinmei: Phase relations in boron at pressures up to 18 GPa and temperatures up to 2200 °C. Phys. Rev. B: Condens. Matter Mater. Phys. 85 (1), 014107 (2012).

    Article  Google Scholar 

  7. 7.

    G. Parakhonskiy, N. Dubrovinskaia, E. Bykova, R. Wirth, and L. Dubrovinsky: High pressure synthesis and investigation of single crystals of metastable boron phases. High Pressure Res. 33 (3), 673 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    O.O. Kurakevych, Y. Godec, T. Hammouda, and C. Goujon: Comparison of solid-state crystallization of boron polymorphs at ambient and high pressures. High Pressure Res. 32 (1), 30 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    H.C. Longuet-Higgins and M.V. Roberts: The electronic structure of an icosahedron of boron atoms. Proc. R. Soc. London, Ser. A 230 (1180), 110 (1955).

    CAS  Article  Google Scholar 

  10. 10.

    G. Will and K. Ploog: Crystal structure of I-tetragonal boron. Nature 251, 406 (1974).

    CAS  Article  Google Scholar 

  11. 11.

    E.A. Ekimov, I.P. Zibrov, and A.V. Zoteev: Preparation of boron microcrystals via high-pressure, high-temperature pyrolysis of decaborane, B10H14. Inorg. Mater. 47 (11), 1194 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    N. Dubrovinskaia, R. Wirth, J. Wosnitza, T. Papageorgiou, H.F. Braun, N. Miyajima, and L. Dubrovinsky: An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure. Proc. Natl. Acad. Sci. 105, 11619 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    E.A. Ekimov, Y.B. Lebed, S.G. Lyapin, and N.F. Borovikov: Synthesis of boron–carbon phases with the α-tetragonal boron structure at 8–9 GPa. Inorg. Mater. 49 (3). 247 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    V.L. Solozhenko and O.O. Kurakevych: Chemical interaction in the B–BN system at high pressures and temperatures: Synthesis of novel boron subnitrides. J. Solid State Chem. 182 (6), 1359 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    S. Latrigue and G. Male: Contribution to the study of tetragonal compounds in the boron carbon system. J. Mater. Sci. Lett. 7, 153 (1988).

    Article  Google Scholar 

  16. 16.

    W. Hayami and S. Otani: The role of surface energy in the growth of boron crystals. J. Phys. Chem. C 111 (2), 688 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    N. Uemura, K. Shirai, H. Eckert, and J. Kunstmann: Structure, non-stoichiometry, and geometrical frustration of α-tetragonal boron. Phys. Rev. B: Condens. Matter Mater. Phys. 93, 104101 (2016).

    Article  Google Scholar 

  18. 18.

    H. Dekura, K. Shirai, and A. Yanase: Metallization of α-boron by hydrogen doping. J. Phys.: Conf. Ser. 176 (1), 012005 (2009).

    Google Scholar 

  19. 19.

    P. Wang, S. Orimo, K. Tanabe, and H. Fujii: Hydrogen in mechanically milled amorphous boron. J. Alloys Compd. 350 218 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    H. Kodama, M. Oyaidzu, M. Sasaki, H. Kimura, Y. Morimoto, Y. Oya, M. Matsuyama, A. Sagara, N. Noda, and K. Okuno: Studies on structural and chemical characterization for boron coating films deposited by PCVD. J. Nucl. Mater. 329, 889 (2004).

    Article  Google Scholar 

  21. 21.

    A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, and A. Falcicchio: EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    J. Rodríguez-Carvajal: Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr). Newsletter 26, 12–19 (2001).

    Google Scholar 

  23. 23.

    T. Roisnel and J. Rodriguez-Carvajal: WinPLOTR: A windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 378–381, 118 (2001).

    Article  Google Scholar 

  24. 24.

    E. Kroumova, J.M. Perez-Mato, and M.I. Aroyo: WYCKSPLIT: A computer program for determination of the relations of Wyckoff positions for a group-subgroup pair. J. Appl. Crystallogr. 31, 646 (1998).

    Article  Google Scholar 

  25. 25.

    M.I. Aroyo, J.M. Perez-Mato, D. Orobengoa, E. Tasci, and G. de la Flor, and A. Kirov: Crystallography online: Bilbao crystallographic server. Bulg. Chem. Commun. 43 (2), 183 (2011).

    CAS  Google Scholar 

  26. 26.

    A. Annen, R. Beckmann, and W. Jacob: Deposition and characterization of dense and stable amorphous hydrogenated boron films at low substrate temperatures. J. Non-Cryst. Solids 209 (3), 240 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    S. Wang, W.L. Mao, and T. Autrey: Bonding in boranes and their interaction with molecular hydrogen at extreme conditions. J. Chem. Phys. 131 (14), 144508 (2009).

    Article  Google Scholar 

  28. 28.

    V.V. Brazhkin, T. Taniguichi, M. Akaishi, and S.V. Popova: Fabrication of β-boron by chemical-reaction and melt-quenching methods at high pressures. J. Mater. Res. 19 (6), 1643 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    K. Shirai, K. Sakuma, and N. Uemura: Theoretical study of the structure of boron carbide B 13 C 2. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 064109 (2014).

    Article  Google Scholar 

  30. 30.

    D.M. Bylander and L. Kleinman: Structure of B13C2. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 1487 (1991).

    CAS  Article  Google Scholar 

  31. 31.

    A. Ektrarawong, S.I. Simak, L. Hultman, J. Birch, and B. Alling: Configurational order-disorder induced metal-nonmetal transition in B 13 C 2 studied with first-principles superatom-special quasirandom structure method. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 014202 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the Russian Foundation for Basic Research, Projects 15-02-05603.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evgeny A. Ekimov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekimov, E.A., Lebed, Y.B., Uemura, N. et al. A new orthorhombic boron phase B51.5–52 obtained by dehydrogenation of “α-tetragonal boron”. Journal of Materials Research 31, 2773–2779 (2016). https://doi.org/10.1557/jmr.2016.209

Download citation