Graphene oxide nanocomposites for potential wearable solar cells—A review

Abstract

With the emergence of flexible/stretchable electronics, flexible solar cells (SCs) are able to attract much academic and industrial attention due to its advantages of lightweight, foldability, low cost, and extensive applications. Wearable technology has become a hot topic in the tech industry in this few years, shirts that read wearer’s biological and physiological information are just beginning to make their way into society and will change the way that we interact with technology. The high strength and good electronic properties of graphene fiber make it a good candidate for some specific applications, such as wearable SCs, since it can be obtained at relatively low cost and it is amongst the strongest commercial yarns in existence. In this review, a summarized state of the art regarding wearable SCs is presented including several applications of graphene and its derivatives with their remarkable unconventional applications.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    D. Zou, D. Wang, Z. Chu, Z. Lv, and X. Fan: Fiber-shaped flexible solar cells. Coord. Chem. Rev. 254, 1169–1178 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    R. Simões and V.F. Neto: Diamond and other carbon related materials applications in photovoltaic solar cells. IEEE International Conference on Electro/Information Technology (EIT), 1–5 (2013).

  3. 3.

    D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, and D.B. Mitzi: Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 6–11 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    K. Ellmer: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809–817 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    C-L. Yeh, H-R. Hsu, S-H. Chen, and Y-S. Liu: Near infrared enhancement in CIGS-based solar cells utilizing a ZnO: H window layer. Opt. Express 20(Suppl 6), A806–A811 (2012).

    Article  Google Scholar 

  6. 6.

    F.J. Pern, F. Yan, K. Zaunbrecher, B. To, J. Perkins, and R. Noufi: Investigation of some transparent metal oxides as damp heat protective coating for CIGS solar cells. Proc. SPIE 8472, Reliab. Photovolt. Cells, Modul. Components, Syst. V 84720I (2012). doi: https://doi.org/10.1117/12.930539.

  7. 7.

    H. Zhu, J. Wei, K. Wang, and D. Wu: Applications of carbon materials in photovoltaic solar cells. Sol. Energ. Mater. Sol. Cell. 93, 1461–1470 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    H. Cheng, C. Hu, Y. Zhao, and L. Qu: Graphene fiber: A new material platform for unique applications. NPG Asia Mater. 6, e113 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    M. Lee, K. Lee, S. Kim, H. Lee, J. Park, K. Choi, H. Kim, D. Kim, D. Lee, S. Nam, and J. Park: High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814–2821 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Z. Lv, J. Yu, H. Wu, J. Shang, D. Wang, S. Hou, Y. Fu, K. Wu, and D. Zou: Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4, 1248 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    M. Pagliaro, G. Palmisano, and R. Ciriminna: Flexible Solar Cells (Wiley-VCH, Dresden, 2008); p. 880–891.

    Google Scholar 

  12. 12.

    T. Matsuyama, K. Wakisaka, M. Kameda, M. Tanaka, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano: Preparation of high-quality n-type poly-Si films by the solid phase crystallization (SPC) method. Jpn. J. Appl. Phys. 29, 2327 (1990).

    CAS  Article  Google Scholar 

  13. 13.

    M. Toivola, J. Halme, K. Miettunen, K. Aitola, and P.D. Lund: Nanostructured dye solar cells on flexible substrates—Review. Int. J. Energy Res. 33, 1145–1160 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Y. He, W. Chen, C. Gao, J. Zhou, X. Li, and E. Xie: An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5, 8799–8820 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    M.G. Kang, N-G. Park, K.S. Ryu, S.H. Chang, and K-J. Kim: A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Sol. Energy Mater. Sol. Cells 90, 574–581 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    M.B. Schubert and J.H. Werner: Flexible solar cells for clothing. Mater. Today 9, 42–50 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, and S. Bauer: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Article  CAS  Google Scholar 

  18. 18.

    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    H. Park, J. Rowehl, K.K. Kim, V. Bulovic, and J. Kong: Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010).

    Article  CAS  Google Scholar 

  20. 20.

    R.X. He, P. Lin, Z.K. Liu, H.W. Zhu, X.Z. Zhao, H.L.W. Chan, and F. Yan: Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett. 12, 1404–1409 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    S. Bae, H. Kim, Y. Lee, X. Xu, J-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. Song, Y-J. Kim, K.S. Kim, B. Özyilmaz, J-H. Ahn, B.H. Hong, and S. Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Z. Liu, J. Li, and F. Yan: Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    S. Ito, N-L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, and M. Gratzel: High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 38, 4004–4006 (2006).

    Article  Google Scholar 

  25. 25.

    J.H. Park, Y. Jun, H-G. Yun, S-Y. Lee, and M.G. Kang: Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J. Electrochem. Soc. 155, 145–149 (2008).

    Article  CAS  Google Scholar 

  26. 26.

    K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai: Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells. Electrochim. Acta 55, 5239–5244 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa: Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol. Energy Mater. Sol. Cells 94, 812–816 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    F. Huang, D. Chen, Q. Li, R.A. Caruso, and Y-B. Cheng: Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks. Appl. Phys. Lett. 100, 123102 (2012).

    Article  CAS  Google Scholar 

  29. 29.

    H.C. Weerasinghe, P.M. Sirimanne, G.P. Simon, and Y-B. Cheng: Cold isostatic pressing technique for producing highly efficient flexible dye-sensitised solar cells on plastic substrates. Prog. Photovolt. Res. Appl. 20, 321–332 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C-S. Ha, and M. Ree: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat. Mater. 5, 197–203 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Y. Kopelevich and P. Esquinazi: Graphene physics in graphite. Adv. Mater. 19, 4559–4563 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    A.B. Bourlinos, V. Georgakilas, R. Zboril, T. Sterioti, and A.K. Stubos: Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5, 1841–1845 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    X. Cui, C. Zhang, R. Hao, and Y. Hou: Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 2118–2126 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    G. Eda, G. Fanchini, and M. Chhowalla: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    F. Kang, Y. Leng, and T-Y. Zhang: Influences of H2O2 on synthesis of H2SO4-GICs. J. Phys. Chem. Solids 57, 889–892 (1996).

    CAS  Article  Google Scholar 

  40. 40.

    F. Kang, T-Y. Zhang, and Y. Leng: Electrochemical behavior of graphite in electrolyte of sulfuric and acetic acid. Carbon 35, 1167–1173 (1997).

    CAS  Article  Google Scholar 

  41. 41.

    Y-X. Pan, Z-Z. Yu, Y-C. Ou, and G-H. Hu: A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J. Polym. Sci., Part B: Polym. Phys. 38, 1626–1633 (2000).

    CAS  Article  Google Scholar 

  42. 42.

    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008).

    CAS  Google Scholar 

  43. 43.

    P.R. Somani, S.P. Somani, and M. Umeno: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56–59 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    H. Cao, Q. Yu, R. Colby, D. Pandey, C.S. Park, J. Lian, D. Zemlyanov, I. Childres, V. Drachev, E.A. Stach, M. Hussain, H. Li, S.S. Pei, and Y.P. Chen: Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties. J. Appl. Phys. 107, 1–20 (2010).

    Google Scholar 

  45. 45.

    S. Bhaviripudi, X. Jia, M.S. Dresselhaus, and J. Kong: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128–4133 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, and Y.H. Lee: Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 21, 2328–2333 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    S. Lee, K. Lee, and Z. Zhong: Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 4702–4707 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    X. Wang, J. Li, Q. Zhong, Y. Zhong, and M. Zhao: Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    Article  CAS  Google Scholar 

  49. 49.

    A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G.V. Tendeloo, A. Vanhulsel, and C.V. Haesendonck: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19, 305604 (2008).

    Article  CAS  Google Scholar 

  50. 50.

    R. Vitchev, A. Malesevic, R.H. Petrov, R. Kemps, M. Mertens, A. Vanhulsel, and C. Van Haesendonck: Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology 21, 095602 (2010).

    Article  CAS  Google Scholar 

  51. 51.

    M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D.M. Manos: A mechanism for carbon nanosheet formation. Carbon 45, 2229–2234 (2007).

    CAS  Article  Google Scholar 

  52. 52.

    I. Forbeaux, J-M. Themlin, and J-M. Debever: Heteroepitaxial graphite on 6H—SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B: Condens. Matter Mater. Phys. 58, 16396–16406 (1998).

    CAS  Article  Google Scholar 

  53. 53.

    J. Hass, W. de Heer, and E.H. Conrad: The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20, 323202 (2008).

    Google Scholar 

  54. 54.

    W. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, and G. Martinez: Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).

    Article  CAS  Google Scholar 

  55. 55.

    F. Varchon, R. Feng, J. Hass, X. Li, B.N. Nguyen, C. Naud, P. Mallet, J.Y. Veuillen, C. Berger, E.H. Conrad, and L. Magaud: Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007).

    CAS  Article  Google Scholar 

  56. 56.

    J. Penuelas, A. Ouerghi, D. Lucot, C. David, J. Gierak, H. Estrade-Szwarckopf, and C. Andreazza-Vignolle: Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 33408 (2009).

    Article  CAS  Google Scholar 

  57. 57.

    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442, 282–286 (2006).

    CAS  Article  Google Scholar 

  58. 58.

    R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J. de Saja, and M.A. Lopez-Manchado: Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008).

    CAS  Article  Google Scholar 

  59. 59.

    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, K. Robert, R. Car, D.A. Seville, and I.A. Aksay: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    CAS  Article  Google Scholar 

  60. 60.

    S. Gilje, S. Han, M. Wang, K.L. Wang, and R.B. Kaner: A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    CAS  Article  Google Scholar 

  61. 61.

    C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  CAS  Google Scholar 

  62. 62.

    W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Article  Google Scholar 

  63. 63.

    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    CAS  Article  Google Scholar 

  64. 64.

    C-G. Lee, S. Park, R.S. Ruoff, and R.S. Dodabalapur: Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 95, 023304 (2009).

    Article  CAS  Google Scholar 

  65. 65.

    A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dékány: Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003).

    CAS  Article  Google Scholar 

  66. 66.

    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, and Y.H. Lee: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987–1992 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J.M.D. Tascón: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008).

    CAS  Article  Google Scholar 

  68. 68.

    D. Li, M.B. Muller, S. Gilje, S. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    CAS  Article  Google Scholar 

  69. 69.

    M. Ramos, M.T. Rispens, M.T. Van Duren, J.C. Hummelen, and R.J. Janssen: Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes [4]. J. Am. Chem. Soc. 123, 6714–6715 (2001).

    CAS  Article  Google Scholar 

  70. 70.

    W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, and R.S. Ruoff: Synthesis and solid-state NMR structural characterization of 13C-Labeled graphite oxide. Science 321, 1815–1817 (2008).

    CAS  Article  Google Scholar 

  71. 71.

    W. Gao, L.B. Alemany, L.B. Ci, and P.M. Ajayan: New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009).

    CAS  Article  Google Scholar 

  72. 72.

    H. He, J. Klinowski, M. Forster, and A. Lerf: A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    CAS  Article  Google Scholar 

  73. 73.

    A. Lerf, H. He, M. Forster, and J. Klinowski: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    CAS  Article  Google Scholar 

  74. 74.

    T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).

    Article  CAS  Google Scholar 

  75. 75.

    S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, and R.S. Ruoff: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    CAS  Article  Google Scholar 

  76. 76.

    Z. Zalan, L. Lazar, and F. Fueloep: Chemistry of hydrazinoalcohols and their heterocyclic derivatives. Part 1. Synthesis of hydrazinoalcohols. Curr. Org. Chem. 9(4), 357–376 (2005).

    CAS  Article  Google Scholar 

  77. 77.

    S. Wang, P.J. Chia, L.L. Chua, L.H. Zhao, R.Q. Png, S. Sivaramakrishnan, M. Zhou, R.G.S. Goh, R.H. Friend, A.T.S. Wee, and P.K.H. Ho: Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater. 20, 3440–3446 (2008).

    CAS  Article  Google Scholar 

  78. 78.

    Z-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H-M. Cheng: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47, 493–499 (2009).

    CAS  Article  Google Scholar 

  79. 79.

    X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang: Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 20, 4490–4493 (2008).

    CAS  Article  Google Scholar 

  80. 80.

    M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, and I.A. Aksay: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).

    CAS  Article  Google Scholar 

  81. 81.

    S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R.B. Kaner: A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4, 3845–3852 (2010).

    CAS  Article  Google Scholar 

  82. 82.

    S. Stankovich, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006).

    CAS  Article  Google Scholar 

  83. 83.

    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen: A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).

    CAS  Article  Google Scholar 

  84. 84.

    S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, and R.C. Haddon: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    CAS  Article  Google Scholar 

  85. 85.

    H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, and L. Niu: Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. 3880–3882 (2009). doi: https://doi.org/10.1039/b905085j.

  86. 86.

    Z. Liu, J.T. Robinson, X. Sun, and H. Dai: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008).

    CAS  Article  Google Scholar 

  87. 87.

    L.M. Veca, F. Lu, M.J. Meziani, L. Cao, P. Zhang, G. Qi, L. Qu, M. Shrestha, and Y-P. Sun: Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun. 2565–2567 (2009). doi: https://doi.org/10.1039/b900590k.

  88. 88.

    N. Mohanty and V. Berry: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008).

    CAS  Article  Google Scholar 

  89. 89.

    Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H. Zhao: Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir 25, 11808–11814 (2009).

    CAS  Article  Google Scholar 

  90. 90.

    M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098 (2009).

    CAS  Article  Google Scholar 

  91. 91.

    S.H. Lee, D.R. Dreyer, J. An, A. Velamakanni, R.D. Piner, S. Park, Y. Zhu, S.O. Kim, C.W. Bielawski, and R.S. Ruoff: Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol. Rapid Comm. 31, 281–288 (2010).

    CAS  Article  Google Scholar 

  92. 92.

    H. Bai, Y. Xu, L. Zhao, C. Li, and G. Shi: Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 1667–1669 (2009). doi: https://doi.org/10.1039/b821805f.

  93. 93.

    A. Chunder, A. Liu, and L. Zhai: Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol. Rapid Commun. 31, 380–384 (2010).

    CAS  Article  Google Scholar 

  94. 94.

    X. Qi, K.Y. Pu, X. Zhou, H. Li, B. Liu, F. Boey, W. Huang, and H. Zhang: Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6, 663–669 (2010).

    CAS  Article  Google Scholar 

  95. 95.

    R. Hao, W. Qian, L. Zhang, and Y. Hou: Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun. 48, 6576–6578 (2008). doi: https://doi.org/10.1039/b816971c.

    Article  CAS  Google Scholar 

  96. 96.

    A. Chunder, T. Pal, S.I. Khondaker, and L. Zhai: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 15129–15135 (2010).

    CAS  Article  Google Scholar 

  97. 97.

    J. Geng and H.T. Jung: Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 114, 8227–8234 (2010).

    CAS  Article  Google Scholar 

  98. 98.

    A. Wojcik and P.V. Kamat: Reduced graphene oxide and porphyrin. An interactive affair in 2-D. ACS Nano 4, 6697–6706 (2010).

    CAS  Article  Google Scholar 

  99. 99.

    Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, and K. Müllen: Composites of graphene with large aromatic molecules. Adv. Mater. 21, 3191–3195 (2009).

    CAS  Article  Google Scholar 

  100. 100.

    Q. Yang, X. Pan, F. Huang, and F. Li: Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 114, 3811–3816 (2010).

    CAS  Article  Google Scholar 

  101. 101.

    C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, and G.N. Chen: A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 48, 4785–4787 (2009).

    CAS  Article  Google Scholar 

  102. 102.

    Z. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, and J.M. Kikkawa: Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).

    Article  CAS  Google Scholar 

  103. 103.

    L.J. Rothberg and A.J. Lovinger: Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 3174–3187 (1996).

    CAS  Article  Google Scholar 

  104. 104.

    I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, and R.S. Ruoff: Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).

    CAS  Article  Google Scholar 

  105. 105.

    A. Lambacher and P. Fromherz: Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer. Appl. Phys. A: Mater. Sci. Process. 63, 207–216 (1996).

    Article  Google Scholar 

  106. 106.

    Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, and Z.X. Shen: Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007).

    CAS  Article  Google Scholar 

  107. 107.

    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, J. Ronan, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, W. Zhiming, I.T. McGovern, G.S. Duesberg, and J.N. Coleman: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009). doi: https://doi.org/10.1021/ja807449u.

    CAS  Article  Google Scholar 

  108. 108.

    E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo: High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576–15577 (2009).

    CAS  Article  Google Scholar 

  109. 109.

    J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón: Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25, 5957–5968 (2009).

    CAS  Article  Google Scholar 

  110. 110.

    J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, and A. Zettl: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008).

    CAS  Article  Google Scholar 

  111. 111.

    M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, and A.K. Geim: Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008).

    CAS  Article  Google Scholar 

  112. 112.

    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and K. Jing: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    CAS  Article  Google Scholar 

  113. 113.

    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    CAS  Article  Google Scholar 

  114. 114.

    X. Peng and R. Ahuja: Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. 8, 4464–4468 (2008).

    CAS  Article  Google Scholar 

  115. 115.

    S.Y. Zhou, G-H. Gweon, V. Fedorov, P.N. First, W. de Heer, D-H. Lee, F. Guinea, H. Castro Neto, and A. Lanzara: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007).

    CAS  Article  Google Scholar 

  116. 116.

    S. Kim, J. Ihm, H.J. Choi, and Y.W. Son: Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100, 176802 (2008).

    Article  CAS  Google Scholar 

  117. 117.

    L. De Arco and Y. Zhang: Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Transactions on Nanotechnology 8(2), 135–138 (2009).

    Article  Google Scholar 

  118. 118.

    Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S.S. Pei: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

    Article  CAS  Google Scholar 

  119. 119.

    X. Li, W. Cai, L. Colombo, and R.S. Ruoff: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).

    CAS  Article  Google Scholar 

  120. 120.

    E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J. Dos Santos, M.B. Lopes, J. Nilsson, F. Guinea, A.K. Geim, and A.H.C. Neto: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 2016802 (2007).

    Article  CAS  Google Scholar 

  121. 121.

    M. Tonouchi: Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007).

    CAS  Article  Google Scholar 

  122. 122.

    F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y.R. Shen: Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    CAS  Article  Google Scholar 

  123. 123.

    P. San-Jose, E. Prada, E. McCann, and H. Schomerus: Pseudospin valve in bilayer graphene: Towards graphene-based pseudospintronics. Phys. Rev. Lett. 102, 247204 (2009).

    CAS  Article  Google Scholar 

  124. 124.

    R.R. Nair, A.N. Grigorenko, P. Blake, K.S. Novoselov, T.J. Booth, N.M.R. Peres, T. Stauber, and A.K. Geim: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Article  Google Scholar 

  125. 125.

    V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, and A.K. Geim: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 155413 (2010).

    Article  CAS  Google Scholar 

  126. 126.

    F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitage, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris: Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    CAS  Article  Google Scholar 

  127. 127.

    F. Rana, P.A. George, J.H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M.G. Spencer: Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 115447 (2009).

    Article  CAS  Google Scholar 

  128. 128.

    S. Park and R.S. Ruoff: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009).

    CAS  Article  Google Scholar 

  129. 129.

    D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov: Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

    CAS  Article  Google Scholar 

  130. 130.

    F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari: Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    CAS  Article  Google Scholar 

  131. 131.

    T. Gokus, R.R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, and A. Hartschuh: Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    CAS  Article  Google Scholar 

  132. 132.

    J.R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking: Organic electroluminescent devices. Science 273, 884–888 (1996).

    CAS  Article  Google Scholar 

  133. 133.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  Article  Google Scholar 

  134. 134.

    D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin: Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 155413 (2009).

    Article  CAS  Google Scholar 

  135. 135.

    J-W. Jiang, J. Lan, J-S. Wang, and B. Li: Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism. J. Appl. Phys. 107, 054314 (2010).

    Article  CAS  Google Scholar 

  136. 136.

    C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Article  Google Scholar 

  137. 137.

    S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).

    Article  CAS  Google Scholar 

  138. 138.

    J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, and L. Shi: Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    CAS  Article  Google Scholar 

  139. 139.

    T. Schwamb, B.R. Burg, N.C. Schirmer, and D. Poulikakos: An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704 (2009).

    Article  CAS  Google Scholar 

  140. 140.

    G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A.C. Ferrari, A.K. Geim, K.S. Novoselov, and C. Galiotis: Subjecting a graphene monolayer to tension and compression. Small 5, 2397–2402 (2009).

    CAS  Article  Google Scholar 

  141. 141.

    C. Lee, X.D. Wei, Q.Y. Li, R. Carpick, J.W. Kysar, and J. Hone: Elastic and frictional properties of graphene. Phys. Status Solidi 246, 2562–2567 (2009).

    CAS  Article  Google Scholar 

  142. 142.

    B. O’Connor, K.P. Pipe, and M. Shtein: Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92, 193306 (2008).

    Article  CAS  Google Scholar 

  143. 143.

    M. Lee, R.D. Eckert, K. Forberich, G. Dennler, C.J. Brabec, and R. Gaudiana: Solar power wires based on organic photovoltaic materials. Science 324, 232–235 (2009).

    CAS  Article  Google Scholar 

  144. 144.

    X. Fan, Z.Z. Chu, F.Z. Wang, C. Zhang, L. Chen, Y.W. Tang, and D.C. Zou: Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20, 592–595 (2008).

    CAS  Article  Google Scholar 

  145. 145.

    H. Wang, Y. Liu, H. Huang, M. Zhong, H. Shen, Y. Wang, and H. Yang: Low resistance dye-sensitized solar cells based on all-titanium substrates using wires and sheets. Appl. Surf. Sci. 255, 9020–9025 (2009).

    CAS  Article  Google Scholar 

  146. 146.

    T. Chen, S. Wang, Z. Yang, Q. Feng, X. Sun, L. Li, Z.S. Wang, and H. Peng: Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 50, 1815–1819 (2011).

    CAS  Article  Google Scholar 

  147. 147.

    C. Xiang, C.C. Young, X. Wang, Z. Yan, C.C. Hwang, G. Cerioti, J. Lin, J. Kono, M. Pasquali, and J.M. Tour: Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25, 4592–4597 (2013).

    CAS  Article  Google Scholar 

  148. 148.

    X. Cai, M. Peng, X. Yu, Y. Fu, and D. Zou: Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2, 1184 (2014).

    CAS  Article  Google Scholar 

  149. 149.

    Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, and L. Qu: All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013).

    CAS  Article  Google Scholar 

  150. 150.

    J. Kim, L.J. Cote, F. Kim, and J. Huang: Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260–267 (2010).

    CAS  Article  Google Scholar 

  151. 151.

    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raul Simões.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simões, R., Neto, V. Graphene oxide nanocomposites for potential wearable solar cells—A review. Journal of Materials Research 31, 1633–1647 (2016). https://doi.org/10.1557/jmr.2016.203

Download citation