Skip to main content
Log in

Equilibrium ternary intermetallic phase in the Mg–Zn–Ca system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study investigates the ternary intermetallic phases in the Mg–Zn–Ca system, which is of great interest for metallic biodegradable implant applications. According to published phase diagrams, the key alloy composition studied herein is located within the Ca2Mg5Zn5, Ca2Mg6Zn3, and IM1 phase fields. Through controlled cooling of the melt, a quasibinary ∼Ca2Mg5Zn5–Mg microstructure was obtained. The large polygonal grains had a composition of Ca2Mg5Zn5 as determined by energy-dispersive x-ray spectroscopy (EDX). Differential scanning calorimetry revealed that Ca2Mg5Zn5 begins to form at ∼417 °C, and the eutectic temperature is ∼369 °C. Based on single-crystal x-ray diffraction data, Ca2Mg5Zn5 was determined to be hexagonal (P63/mmc), with lattice parameters of a = 9.5949(3) Å and c = 10.0344(3) Å. This was also verified by transmission electron microscopy. Further refinements, which considered the possibility of mixed Mg/Zn sites, significantly improved the data fit compared to the initial ordered structural model. The final refined structure possesses a composition of Ca16Mg42Zn42, very similar to the chemical analysis results from EDX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728–1734 (2005).

    Article  Google Scholar 

  2. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005).

    Article  CAS  Google Scholar 

  3. A.C. Hänzi, I. Gerber, M. Schinhammer, J.F. Löffler, and P.J. Uggowitzer: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 6, 1824–2833 (2010).

    Article  Google Scholar 

  4. T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg: Magnesium alloys for temporary implants in osteosynthesis: In-vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 1230–1238 (2012).

    Article  CAS  Google Scholar 

  5. B. Zberg, P.J. Uggowitzer, and J.F. Löffler: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009).

    Article  CAS  Google Scholar 

  6. J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler: High-strength low-alloy (HSLA) Mg–Zn–Ca alloys with excellent biodegradation performance. JOM 66, 566–572 (2014).

    Article  CAS  Google Scholar 

  7. J. Hofstetter, E. Martinelli, S. Pogatscher, P. Schmutz, E. Povoden-Karadeniz, A.M. Weinberg, P.J. Uggowitzer, and J.F. Löffler: Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater. 23, 347–353 (2015).

    Article  CAS  Google Scholar 

  8. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany: Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys. Corros. Sci. 64, 184–197 (2012).

    Article  CAS  Google Scholar 

  9. H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M.A.M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, and M. Medraj: Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications. Mater. Corros. 65, 1178–1187 (2014).

    Article  CAS  Google Scholar 

  10. K. Hagihara, S. Shakudo, K. Fujii, and T. Nakano: Degradation behavior of Ca–Mg–Zn intermetallic compounds for use as biodegradable implant materials. Mater. Sci. Eng., C 44, 285–292 (2014).

    Article  CAS  Google Scholar 

  11. X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, and W. Wang: Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31, 1093–1103 (2010).

    Article  CAS  Google Scholar 

  12. X. Xie, X. Wang, Y. Wang, G. Zhang, Y. He, Y. Zheng, and L. Qin: Ca–Mg–Zn metallic glass as degradable biomaterials developed for potential orthopaedic applications. Bone 47, 425 (2010).

    Article  Google Scholar 

  13. A.C. Hänzi, A.S. Sologubenko, P. Gunde, M. Schinhammer, and P.J. Uggowitzer: Design considerations for achieving simultaneously high-strength and highly ductile magnesium alloys. Philos. Mag. Lett. 92, 417–427 (2012).

    Article  Google Scholar 

  14. A.C. Hänzi, F.H. Dalla Torre, A.S. Sologubenko, P. Gunde, R. Schmid-Fetzer, M. Kuehlein, J.F. Löffler, and P.J. Uggowitzer: Design strategy for microalloyed ultra-ductile magnesium alloys. Philos. Mag. Lett. 89, 377–390 (2009).

    Article  Google Scholar 

  15. J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler: Processing and microstructure-property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys. Acta Mater. 98, 423–432 (2015).

    Article  CAS  Google Scholar 

  16. Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones: Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater. Sci. Eng., C 48, 480–486 (2015).

    Article  CAS  Google Scholar 

  17. K.D. Ralston and N. Birbilis: Effect of grain size on corrosion: A review. Corrosion 66, 0750051 (2010).

    Article  Google Scholar 

  18. R. Paris: Publications scientifiques et techniques du minist’ere de l’air, Ministere de L’Air, 1–86 (1934).

  19. J.B. Clark: The solid constitution in the magnesium-rich region of the Mg–Ca–Zn phase diagram. Trans. Metall. Soc. AIME 221, 644–645 (1961).

    CAS  Google Scholar 

  20. J.B. Clark: Joint Committee on Powder Diffraction Standards (JCPDS) Card. 12-266 (1961).

  21. J.B. Clark: Joint Committee on Powder Diffraction Standards (JCPDS) Card. 12-569 (1961).

  22. T.V. Larionova, W-W. Park, and B-S. You: A ternary phase observed in rapidly solidified Mg–Ca–Zn alloys. Scr. Mater. 45, 7–12 (2001).

    Article  CAS  Google Scholar 

  23. P.M. Jardim, G. Solórzano, and J.B.V. Sande: Precipitate crystal structure determination in melt spun Mg–1.5wt%Ca–6wt%Zn alloy. Microsc. Microanal. 8, 487–496 (2002).

    Article  CAS  Google Scholar 

  24. P.M. Jardim, G. Solórzano, and J.B.V. Sande: Second phase formation in melt-spun Mg–Ca–Zn alloys. Mater. Sci. Eng., A 381, 196–205 (2004).

    Article  Google Scholar 

  25. K. Oh-ishi, R. Watanabe, C.L. Mendis, and K. Hono: Age-hardening response of Mg–0.3 at.% Ca alloys with different Zn contents. Mater. Sci. Eng., A 526, 177–184 (2009).

    Article  Google Scholar 

  26. F. Naghdi and R. Mahmudi: Effect of solution treatment on the microstructural evolution and mechanical properties of an aged Mg–4Zn–0.3Ca alloy. Mater. Sci. Eng., A 631, 144–152 (2015).

    Article  CAS  Google Scholar 

  27. Y-N. Zhang, D. Kevorkov, F. Bridier, and M. Medraj: Morphological and crystallographic characterizations of the Ca–Mg–Zn intermetallics appearing in ternary diffusion couples. Adv. Mater. Res. 409, 387–392 (2012).

    Article  CAS  Google Scholar 

  28. Y-N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, and M. Medraj: Determination of the solubility range and crystal structure of the Mg-rich ternary compound in the Ca–Mg–Zn system. Intermetallics 18, 2404–2411 (2010).

    Article  CAS  Google Scholar 

  29. Y-N. Zhang, D. Kevorkov, X.D. Liu, F. Bridier, P. Chartrand, and M. Medraj: Homogeneity range and crystal structure of the Ca2Mg5Zn13 compound. J. Alloys. Compd. 523, 75–82 (2012).

    Article  CAS  Google Scholar 

  30. Y-N. Zhang: Experimental investigation of the Ca–Mg–Zn system via diffusion couples and key experiments (thesis); performed at the Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Canada, 2010.

  31. P.A. Stadelmann: EMS—A software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131–145 (1987).

    Article  CAS  Google Scholar 

  32. “JEMS-SAAS V4”, P.A. Stadelmann, 2015, http://www.jems-saas.ch/.

  33. C.O. Brubaker and Z-K. Liu: A computational thermodynamic model of the Ca–Mg–Zn system. J. Alloys. Compd. 370, 114–122 (2004).

    Article  CAS  Google Scholar 

  34. M. Mezbahul-Islam, Y.N. Zhang, C. Shekhar, and M. Medraj: Critical assessment and thermodynamic modeling of Mg–Ca–Zn system supported by key experiments. CALPHAD 46, 134–147 (2014).

    Article  CAS  Google Scholar 

  35. S. Wasiur-Rahman and M. Medraj: Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems. Intermetallics 17, 847–864 (2009).

    Article  CAS  Google Scholar 

  36. H.O. Thaddeus, B. Massalski, P.R. Subramanian, and L. Kacprzak: Binary alloy phase diagrams. In Mg–Zn Phase Diagram, Hugh Baker, ed. (ASM International, Materials Park, Ohio, 1990).

    Google Scholar 

  37. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1994).

    Google Scholar 

  38. Y-N. Zhang, D. Kevorkov, F. Bridier, and M. Medraj: Experimental study of the Ca–Mg–Zn system using diffusion couples and key alloys. Sci. Technol. Adv. Mater. 12, 025003 (2011).

    Article  Google Scholar 

  39. A.A. Kodentsov, G.F. Bastin, and F.J.J. van Loo: The diffusion couple technique in phase diagram determination. J. Alloys. Compd. 320, 207–217 (2001).

    Article  CAS  Google Scholar 

  40. G.M. Sheldrick: A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2007).

    Article  Google Scholar 

  41. O.N. Senkov, D.B. Miracle, E.R. Barney, A.C. Hannon, Y.Q. Cheng, and E. Ma: Local atomic structure of Ca–Mg–Zn metallic glasses. Phys. Rev. B 82, 104206 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Erwin Fischer (LMPT, ETH Zurich) for help with the sample preparation, Peter Uggowitzer (LMPT, ETH Zurich) for fruitful discussions, and Fiodar Kurdzesau (Laboratory of Crystallography, ETH Zurich) for performing the single-crystal x-ray measurements. This work was funded by the Laura Bassi Center of Expertise (BRIC, Bioresorbable Implants for Children), FFG, Austria, and by an ETH Research Grant (ETH-41 13-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg F. Löffler.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J.D., Weber, T., Schäublin, R. et al. Equilibrium ternary intermetallic phase in the Mg–Zn–Ca system. Journal of Materials Research 31, 2147–2155 (2016). https://doi.org/10.1557/jmr.2016.196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.196

Navigation