Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: A review

Abstract

With the advent of flexible, wearable and portable electronic products, flexible lithium-ion batteries (LIBs) and electrochemical capacitors (ECs), which are able to withstand repeated deformation or bending, have attracted considerable attention as one type of energy-storage device. However, the fabrication of these flexible electrodes is the main bottleneck in the practical utilization and application of these energy-storage devices. Up to now, enormous efforts have been made in addressing the shortcomings and remarkable improvements have also been achieved. So a systematic review of the status and progresses is highly required. In this review, we first make a short introduction about the challenges faced in the conventional batteries and capacitors. Then, we summarize the recent improvements in flexible and wearable LIBs and ECs with a focus on the flexible active materials and substrates. Finally, we discuss the prospects and challenges towards the practical applications of the flexible electrodes in the future.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    M. Armand and J-M. Tarascon: Building better batteries. Nature 451(7179), 652 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    M. Yazici, D. Krassowski, and J. Prakash: Flexible graphite as battery anode and current collector. J. Power Sources 141(1), 171 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, and L. Qi: Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 7(6), 1924 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    A.S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, and W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Hu and X. Sun: Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A 2(28), 10712 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang, and S. Fan: Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 23(7), 846 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2(6), 638 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Y.A. Kim, M. Kojima, H. Muramatsu, S. Umemoto, T. Watanabe, K. Yoshida, K. Sato, T. Ikeda, T. Hayashi, and M. Endo: In situ Raman Study on single-and double-walled carbon nanotubes as a function of lithium insertion. Small 2(5), 667 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, and P.M. Deyà: Ab initio investigations of lithium diffusion in single-walled carbon nanotubes. Chem. Phys. 297(1), 85 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    H. Gwon, J. Hong, H. Kim, D-H. Seo, S. Jeon, and K. Kang: Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7(2), 538 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    S.Y. Chew, S.H. Ng, J. Wang, P. Novák, F. Krumeich, S.L. Chou, J. Chen, and H.K. Liu: Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47(13), 2976 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    B.J. Landi, M.J. Ganter, C.M. Schauerman, C.D. Cress, and R.P. Raffaelle: Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C 112(19), 7509 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. Hsu, and H. Touhara: Electrochemical Li insertion in B-doped multiwall carbon nanotubes. J. Electrochem. Soc. 149(1), A39 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B-S. Kim, P.T. Hammond, and Y. Shao-Horn: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5(7), 531 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    H.X. Zhang, C. Feng, Y.C. Zhai, K.L. Jiang, Q.Q. Li, and S.S. Fan: Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 21(22), 2299 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    H-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, and Y.H. Lee: Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    J.W. Jo, J.W. Jung, J.U. Lee, and W.H. Jo: Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 4(9), 5382 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    S.L. Hellstrom, H.W. Lee, and Z. Bao: Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. ACS Nano 3(6), 1423 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Hou, Y. Cheng, T. Hobson, and J. Liu: Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 10(7), 2727 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    X. Jia, C. Yan, Z. Chen, R. Wang, Q. Zhang, L. Guo, F. Wei, and Y. Lu: Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem. Commun. 47(34), 9669 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    J. Cheng, B. Wang, H.L. Xin, C. Kim, F. Nie, X. Li, G. Yang, and H. Huang: Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: A free-standing and binder-free Li-ion anode. J. Mater. Chem. A 2(8), 2701 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    G. Zhou, F. Li, and H-M. Cheng: Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    K. Fu, O. Yildiz, H. Bhanushali, Y. Wang, K. Stano, L. Xue, X. Zhang, and P.D. Bradford: Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 25(36), 5109 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Z. Chen, J.W. To, C. Wang, Z. Lu, N. Liu, A. Chortos, L. Pan, F. Wei, Y. Cui, and Z. Bao: A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy. Mater. 4(12), 1400507 (2014).

    Article  CAS  Google Scholar 

  26. 26.

    A.B. Dalton, S. Collins, E. Muñoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, and R.H. Baughman: Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    Y.L. Li, I.A. Kinloch, and A.H. Windle: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang, P. Chen, X. Chen, J. Deng, Y. Wang, and H. Peng: Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26(8), 1217 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    K. Novoselov and A. Geim: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  30. 30.

    S. Park and R.S. Ruoff: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, and G.L. Graff: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3), 1587 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.A. Dubonos, I. Grigorieva, and A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30 (2008).

    Article  CAS  Google Scholar 

  35. 35.

    C. Mattevi, H. Kim, and M. Chhowalla: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21(10), 3324 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, and Y.K. Gun’Ko: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    C. Wang, D. Li, C.O. Too, and G.G. Wallace: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21(13), 2604 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    A. Pandolfo and A. Hollenkamp: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    D. Li, M.B. Muller, S. Gilje, R.B. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, and D. Li: Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18), 3557 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Q. Wu, Y. Xu, Z. Yao, A. Liu, and G. Shi: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    X. Yang, J. Zhu, L. Qiu, and D. Li: Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 23(25), 2833 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    B. Shen, W. Zhai, and W. Zheng: Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Y. Gao, L-Q. Liu, S-Z. Zu, K. Peng, D. Zhou, B-H. Han, and Z. Zhang: The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS Nano 5(3), 2134 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Q. Wang, J.L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, and T. Aida: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279), 339 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Y. Tian, Y. Cao, Y. Wang, W. Yang, and J. Feng: Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv. Mater. 25(21), 2980 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    M.J. LaVoie, B.L. Ostaszewski, A. Weihofen, M.G. Schlossmacher, and D.J. Selkoe: Dopamine covalently modifies and functionally inactivates parkin. Nat. Med. 11(11), 1214 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H-M. Cheng: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    T.H. Han, W.J. Lee, D.H. Lee, J.E. Kim, E.Y. Choi, and S.O. Kim: Peptide/graphene hybrid assembly into core/shell nanowires. Adv. Mater. 22(18), 2060 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    X. Zhao, C.M. Hayner, M.C. Kung, and H.H. Kung: Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11), 8739 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H.M. Cheng: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    K. Xi, P.R. Kidambi, R. Chen, C. Gao, X. Peng, C. Ducati, S. Hofmann, and R.V. Kumar: Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 6(11), 5746 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, and D. Zhao: Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 24(32), 4419 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    F. Liu, S. Song, D. Xue, and H. Zhang: Folded structured graphene paper for high performance electrode materials. Adv. Mater. 24(8), 1089 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    A. Yu, I. Roes, A. Davies, and Z. Chen: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96(25), 253105 (2010).

    Article  CAS  Google Scholar 

  58. 58.

    H. Gwon, H-S. Kim, K.U. Lee, D-H. Seo, Y.C. Park, Y-S. Lee, B.T. Ahn, and K. Kang: Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 4(4), 1277 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, and X. Xiao: Free-Standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2(15), 1855 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    D. Deng, M.G. Kim, J.Y. Lee, and J. Cho: Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci. 2(8), 818 (2009).

    CAS  Article  Google Scholar 

  61. 61.

    B. Wang, X. Li, X. Zhang, B. Luo, M. Jin, M. Liang, S.A. Dayeh, S. Picraux, and L. Zhi: Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 7(2), 1437 (2013).

    Article  CAS  Google Scholar 

  62. 62.

    X. Huang, B. Sun, K. Li, S. Chen, and G. Wang: Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. J. Mater. Chem. A 1(43), 13484 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    W-M. Zhang, X-L. Wu, J-S. Hu, Y-G. Guo, and L-J. Wan: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18(24), 3941 (2008).

    CAS  Article  Google Scholar 

  64. 64.

    R. Wang, C. Xu, J. Sun, L. Gao, and C. Lin: Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J. Mater. Chem. A 1(5), 1794 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    R. Wang, C. Xu, J. Sun, Y. Liu, L. Gao, and C. Lin: Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets. Nanoscale 5(15), 6960 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    H. Ji, L. Zhang, M.T. Pettes, H. Li, S. Chen, L. Shi, R. Piner, and R.S. Ruoff: Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes. Nano Lett. 12(5), 2446 (2012).

    CAS  Article  Google Scholar 

  67. 67.

    X. Li, T. Zhao, K. Wang, Y. Yang, J. Wei, F. Kang, D. Wu, and H. Zhu: Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27(19), 12164 (2011).

    CAS  Article  Google Scholar 

  68. 68.

    E.Y. Jang, J. Carretero-González, A. Choi, W.J. Kim, M.E. Kozlov, T. Kim, T.J. Kang, S.J. Baek, D.W. Kim, and Y.W. Park: Fibers of reduced graphene oxide nanoribbons. Nanotechnology 23(23), 235601 (2012).

    Article  CAS  Google Scholar 

  69. 69.

    Z. Tian, C. Xu, J. Li, G. Zhu, Z. Shi, and Y. Lin: Self-assembled free-standing graphene oxide fibers. ACS Appl. Mater. Interfaces 5(4), 1489 (2013).

    CAS  Article  Google Scholar 

  70. 70.

    Z. Xu and C. Gao: Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

    Article  CAS  Google Scholar 

  71. 71.

    Z. Xu, H. Sun, X. Zhao, and C. Gao: Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188 (2013).

    CAS  Article  Google Scholar 

  72. 72.

    Y. Zhao, C. Jiang, C. Hu, Z. Dong, J. Xue, Y. Meng, N. Zheng, P. Chen, and L. Qu: Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7(3), 2406 (2013).

    CAS  Article  Google Scholar 

  73. 73.

    S.H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S. Aminorroaya Yamini, K. Konstantinov, R.L. Shepherd, J. Chen, and S.E. Moulton: High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles. ACS Nano 8(3), 2456 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    C. Xiang, C.C. Young, X. Wang, Z. Yan, C.C. Hwang, G. Cerioti, J. Lin, J. Kono, M. Pasquali, and J.M. Tour: Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25(33), 4592 (2013).

    CAS  Article  Google Scholar 

  75. 75.

    Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, and L. Qu: Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24(14), 1856 (2012).

    CAS  Article  Google Scholar 

  76. 76.

    Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, and L. Qu: MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32 (2014).

    CAS  Article  Google Scholar 

  77. 77.

    Y. Hu, X. Li, J. Wang, R. Li, and X. Sun: Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J. Power Sources 237, 41 (2013).

    CAS  Article  Google Scholar 

  78. 78.

    L. Qiu, X. Yang, X. Gou, W. Yang, Z.F. Ma, G.G. Wallace, and D. Li: Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 16(35), 10653 (2010).

    CAS  Article  Google Scholar 

  79. 79.

    H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, and H. Peng: Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26(18), 2868 (2014).

    CAS  Article  Google Scholar 

  80. 80.

    L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, and C. Gao: Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 536 (2014).

    Article  CAS  Google Scholar 

  81. 81.

    G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, and Y. Li: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26(17), 2676 (2014).

    CAS  Article  Google Scholar 

  82. 82.

    H. Yu, C. Zhu, K. Zhang, Y. Chen, C. Li, P. Gao, P. Yang, and Q. Ouyang: Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. J. Mater. Chem. A 2(13), 4551 (2014).

    CAS  Article  Google Scholar 

  83. 83.

    B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen: Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12(6), 3005 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    Y. Sun, R.B. Sills, X. Hu, Z.W. Seh, X. Xiao, H. Xu, W. Luo, H. Jin, Y. Xin, T. Li, Z. Zhang, J. Zhou, W. Cai, Y. Huang, and Y. Cui: A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 15(6), 3899 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    H. Wu, Z. Lou, H. Yang, and G. Shen: A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7(5), 1921 (2015).

    CAS  Article  Google Scholar 

  86. 86.

    G-W. Yang, C-L. Xu, and H-L. Li: Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 48, 6537 (2008).

    Article  CAS  Google Scholar 

  87. 87.

    Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, L. Yang, and J. Zhong: Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 88, 766 (2013).

    CAS  Article  Google Scholar 

  88. 88.

    Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, and J. Chen: Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano Lett. 15(1), 721 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    X. Li, J. Yang, Y. Hu, J. Wang, Y. Li, M. Cai, R. Li, and X. Sun: Novel approach toward a binder-free and current collector-free anode configuration: Highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. J. Mater. Chem. 22(36), 18847 (2012).

    CAS  Article  Google Scholar 

  90. 90.

    Y. Won, A. Kim, W. Yang, S. Jeong, and J. Moon: A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Mater 6(9), e132 (2014).

    CAS  Article  Google Scholar 

  91. 91.

    S. Jiang, H. Zhang, S. Song, Y. Ma, J. Li, G.H. Lee, Q. Han, and J. Liu: Highly stretchable conductive fibers from few-walled carbon nanotubes coated on poly(m-phenylene isophthalamide) Polymer core/shell structures. ACS Nano 9(10), 10252 (2015).

    CAS  Article  Google Scholar 

  92. 92.

    K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, and Y. Gogotsi: Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4(12), 5060 (2011).

    CAS  Article  Google Scholar 

  93. 93.

    G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, and H.M. Cheng: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26(4), 625 (2014).

    CAS  Article  Google Scholar 

  94. 94.

    G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li, and H-M. Cheng: A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11, 356 (2015).

    CAS  Article  Google Scholar 

  95. 95.

    T. Chen, H. Peng, M. Durstock, and L. Dai: High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci. Rep. 4, 204 (2014).

    Google Scholar 

  96. 96.

    H. Lee, J-K. Yoo, J-H. Park, J.H. Kim, K. Kang, and Y.S. Jung: A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation. Adv. Energy. Mater. 2(8), 976 (2012).

    CAS  Article  Google Scholar 

  97. 97.

    L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, and Y. Cui: Stretchable, porous, and conductive energy textiles. Nano Lett. 10(2), 708 (2010).

    CAS  Article  Google Scholar 

  98. 98.

    M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, and K.J. Lee: Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12(9), 4810 (2012).

    CAS  Article  Google Scholar 

  99. 99.

    P. Barpanda, J.N. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, M. Deschamps, and J.M. Tarascon: LiZnSO4F made in an ionic liquid: A ceramic electrolyte composite for solid-state lithium batteries. Angew. Chem., Int. Ed. 50(11), 2526 (2011).

    CAS  Article  Google Scholar 

  100. 100.

    H-J. Ha, E-H. Kil, Y.H. Kwon, J.Y. Kim, C.K. Lee, and S-Y. Lee: UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci. 5(4), 6491 (2012).

    CAS  Article  Google Scholar 

  101. 101.

    E.H. Kil, K.H. Choi, H.J. Ha, S. Xu, J.A. Rogers, M.R. Kim, Y.G. Lee, K.M. Kim, K.Y. Cho, and S.Y. Lee: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv. Mater. 25(10), 1395 (2013).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work Supported by Natural Science Foundation of Shanxi Province (Grant No: 2015021062).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lizhen Gao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, W., Li, X. et al. Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: A review. Journal of Materials Research 31, 1648–1664 (2016). https://doi.org/10.1557/jmr.2016.195

Download citation