Preparation of vanadium powder and vanadium-titanium alloys by the electroreduction of V2O3 and TiO2 powders

Abstract

Electroreduction of solid V2O3 pellets (∼0.7 g) to V in molten CaCl2 at 900 °C has been studied by cyclic voltammetry and potentiostatic electrolysis, together with scanning electron microscopy, energy dispersive x-ray, and elemental analyses. The intermediate products of the potentiostatic electrolysis are various, forming some lower valence state compounds (VO, V16O3, V7O3, VO0.2) and higher valence state which are likely VO2, CaVO3, or CaV2O5. At potentials more negative than −0.6 V versus Ag/AgCl, fine vanadium powder (aggregates of nodular ∼500 nm particles) can be prepared by electrolysis of porous solid of the V2O3 pellets. The current efficiency and energy consumption were satisfactory, about 53.4% and 2.5 kW h/(kg V) at −0.6 V versus Ag/AgCl, respectively. Moreover, V-20Ti alloys were electrochemically synthesized by constant voltage electrolysis at the indicated potentials, the control of composition as well as the reduction optimization of the mixtures were demonstrated. This electrochemical route is efficient and offers a product with controlled stoichiometry, with particular advantage of manufacturing of low cost alloys and intermetallics directly from mixed oxide precursors, and has potential to produce functional vanadium alloys.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    B. Gummow: Vanadium: Environmental Pollution and Health Effects. In: Reference Module in Earth Systems and Environmental Sciences, from Encyclopedia of Environmental Health (Elsevier, Philadelphia, 2011); p.628–636.

    Google Scholar 

  2. 2.

    X.W. Qi, Z.N. Jia, Q.X. Yang, and Y.L. Yang: Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hardfacing metal. Surf. Coat. Technol. 205, 5510 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    V. Ollilainen, W. Kasprzak, and L. Holappa: The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels. J. Mater. Process. Technol. 134, 405 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    T. Muroga, T. Nagasaka, A. Iiyoshi, A. Kawabata, S. Sakurai, and M. Sakata: NIFS program for large ingot production of a V–Cr–Ti alloy. J. Nucl. Mater. 283, 711 (2000).

    Article  Google Scholar 

  5. 5.

    C. Tyzach and P.G. England: Extraction and Refining of the Rarer Metals (The Institution of Mining and Metallurgy, London, 1957).

    Google Scholar 

  6. 6.

    R.O. Suzuki and H. Ishikawa: Advanced Processing of Metals and Materials, Vol. 3 (Wiley, San Francisco, 2006).

    Google Scholar 

  7. 7.

    K. Ono and R.O. Suzuki: A new concept of sponge titanium production by calciothermic reduction of titanium dioxide in molten calcium chloride. JOM 54, 59 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    R.O. Suzuki, K. Tatemoto, and H. Kitagawa: Direct synthesis of the hydrogen storage V–Ti Alloy powder from the oxides by calcium Co-reduction. J. Alloys Compd. 385, 173 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    R.O. Suzuki: Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. J. Phys. Chem. Solids 66, 461 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Y.J. Liu, Y. Ge, D. Yu, T.Y. Pan, and L.J. Zhang: Assessment of the diffusional mobilities in bcc Ti–V alloys. J. Alloys Compd. 470, 176 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, and L.J. Pang: Hydrogen storage properties of V–Ti–Cr–Fe alloys. J. Alloys Compd. 454, 427 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    S.C. Li and M.S. Zhao: Research status of vanadium based solid solution hydrogen storage alloys. Chin. J. Rare Met. 4, 31 (2007). (In Chinese).

    CAS  Google Scholar 

  13. 13.

    G.Z. Chen and D.J. Fray: Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride. J. Electrochem. Soc. 149, E455 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    G.Z. Chen, D.J. Fray, and T.W. Farthing: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    K. Jiang, X.H. Hu, M. Ma, D.H. Wang, G.H. Qiu, X.B. Jin, and G.Z. Chen: “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew. Chem. Int. Ed. 45, 428 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    T. Wu, X.B. Jin, W. Xiao, X.H. Hu, D.H. Wang, and G.Z. Chen: Thin pellets: Fast electrochemical preparation of capacitor tantalum powders. Chem. Mater. 19, 153 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    X.Y. Yan and D.J. Fray: Electrochemical studies on reduction of solid Nb2O5 in molten CaCl2NaCl eutectic. J. Electrochem. Soc. 152, D12 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    X.Y. Yan and D.J. Fray: Electrochemical studies on reduction of solid Nb2O5 in molten CaCl2–NaCl eutectic. J. Electrochem. Soc. 152, E308 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    X.Y. Yan and D.J. Fray: Production of niobium powder by direct electrochemical reduction of solid Nb2O5 in a eutectic CaCl2–NaCl melt. Metall. Mater. Trans. B 33, 685 (2002).

    Article  Google Scholar 

  20. 20.

    T. Wu, X.B. Jin, W. Xiao, C. Liu, D.H. Wang, and G.Z. Chen: Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Phys. Chem. Chem. Phys. 10, 1809 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    G.M. Li, D.H. Wang, X.B. Jin, and G.Z. Chen: Affordable electrolytic ferrotitanium alloys with marine engineering potentials. Electrochem. Commun. 9, 1951 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    T. Nohira, K. Yasuda, and Y. Ito: Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat. Mater. 2, 397 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    X.B. Jin, P. Gao, D.H. Wang, X.H. Hu, and G.Z. Chen: Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew. Chem. Int. Ed. 43, 733 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    E. Gordo, G.Z. Chen, and D.J. Fray: Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim. Acta 49, 2195 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    G.Z. Chen, E. Gordo, and D.J. Fray: Direct electrolytic preparation of chromium powder. Metall. Mater. Trans. B 35, 223 (2004).

    Article  Google Scholar 

  26. 26.

    Y. Zhu, D.H. Wang, M. Ma, X.H. Hu, X.B. Jin, and G.Z. Chen: More affordable electrolytic LaNi5-type hydrogen storage powders. Chem. Commun. 25, 15 (2007).

    Google Scholar 

  27. 27.

    G.H. Qiu, D.H. Wang, M. Ma, X.B. Jin, and G.Z. Chen: Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2. J. Electroanal. Chem. 589, 139 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    M. Ma, D.H. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen: A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys. Chem. — Eur. J. 12, 5075 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    F. Mearns: Metals without the meltdown. Chem. Technol. 5, T25 (2008).

    Google Scholar 

  30. 30.

    F. Mearns: Metals without meltdown. Chem. World 5, 38 (2008).

    Google Scholar 

  31. 31.

    G.H. Qiu, M. Ma, D.H. Wang, X.B. Jin, and G.Z. Chen: Metallic cavity electrodes for investigation of powders: Electrochemical reduction of NiO and Cr2O3 powders in molten CaCl2 physical and analytical electrochemistry. J. Electrochem. Soc. 152, 328 (2005).

    Article  Google Scholar 

  32. 32.

    P. Gao, X.B. Jin, D.H. Wang, X.H. Hu, and G.Z. Chen: A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts. J. Electroanal. Chem. 579, 321 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    W. Xiao, X.B. Jin, Y. Deng, D.H. Wang, X.H. Hu, and G.Z. Chen: Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2. ChemPhysChem 7, 1750 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    G.H. Qiu, M. Ma, D.H. Wang, X.B. Jin, X.H. Hu, and G.Z. Chen: Metallic cavity electrodes for investigation of powders: Electrochemical reduction of NiO and Cr2O3 powders in molten CaCl2. J. Electrochem. Soc. 152, E328 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    H.M. Li, K.L. Wang, W. Li, S.J. Cheng, and K. Jiang: Molten salt electrochemical synthesis of sodium titanates as high performance anode materials for sodium ion batteries. J. Mater. Chem. A 3, 16495 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    W. Xiao and D.H. Wang: The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem. Soc. Rev. 43, 3215 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    W. Xiao, X.B. Jin, and G.Z. Chen: Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon. J. Mater. Chem. A 1, 10243 (2013).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 21303045 and 21173161), Natural Science Foundation of Hubei Province (2014CFA527), 2014 Young Talents Development Plan of Hubei Province, Wuhan Chenguang Project (2015070404010212). We thank the Center for Electron Microscopy at Wuhan University for helps in taking the TEM and high-resolution TEM images for the materials.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xianbo Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Ma, X. & Jin, X. Preparation of vanadium powder and vanadium-titanium alloys by the electroreduction of V2O3 and TiO2 powders. Journal of Materials Research 31, 405–417 (2016). https://doi.org/10.1557/jmr.2016.18

Download citation