Hot deformation behavior of Ti-22Al-25Nb alloy by processing maps and kinetic analysis

Abstract

To study the hot deformation behavior of the Ti-22Al-25Nb alloy, isothermal compression tests were conducted at the temperature range of 930–1080 °C with strain rates of 0.001–1.0 s−1. Both the strain rate and the deformation temperature have a significant influence on the stress–strain behavior of the Ti-22Al-25Nb alloy. A hyperbolic–sine constitutive equation is established to quantitatively demonstrate the relationship between the parameters involved, and the hot deformation activation energy Q is determined as 621 kJ/mol. To optimize the processing window, a hot processing map is established, which is related to the microstructure evolution in hot working. The lamellar globularization as well as the dynamic recrystallization (DRX) would contribute to the stable regions with high power dissipation, while the adiabatic shear bands would lead to unstable regions. Moreover, an Avrami-type kinetics model is applied to examine the evolution of DRX during isothermal deformation process.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

References

  1. 1.

    A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet: Microstructure and mechanical properties of orthorhombic alloys in the Ti-Al-Nb system. Intermetallics 6, 741–748 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    T.K. Nandy and D. Banerjee: Deformation mechanisms in the O phase. Intermetallics 8, 1269–1282 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    S. Emura, K. Tsuzaki, and K. Tsuchiya: Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Mater. Sci. Eng., A 528, 355–362 (2010).

    Article  Google Scholar 

  4. 4.

    L.Q. Xu, D.T. Zhang, Y.C. Liu, B.Q. Ning, Z.X. Qiao, Z.S. Yan, and H.J. Li: Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel. Int. J. Min. Met. Mater. 21, 438–447 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    S.R. Dey, S. Roy, S. Suwas, J.J. Fundenberger, and R.K. Ray: Annealing response of the intermetallic alloy Ti-22Al-25Nb. Intermetallics 18, 1122–1131 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    S.R. Dey, S. Suwas, J.J. Fundenberger, and R.K. Ray: Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti-22Al-25Nb. Intermetallics 17, 622–633 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    J.B. Jia, K.F. Zhang, and Z. Lu: Dynamic recrystallization kinetics of a powder metallurgy Ti-22Al-25Nb alloy during hot compression. Mater. Sci. Eng., A 607, 630–639 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    C. Xue, W.D. Zeng, B. Xu, X.B. Liang, J.W. Zhang, and S.Q. Li: B2 grain growth and particle pinning effect of Ti-22Al-25Nb orthorhombic intermetallic alloy during heating process. Intermetallics 29, 41–47 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Y.H. Zhou, Y.C. Liu, X.S. Zhou, C.X. Liu, L.M. Yu, C. Li, and B.Q. Ning: Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stain less steel. J. Mater. Res. 30, 2090–2100 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li: Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review. J. Mater. Sci. Technol. 31, 235–242 (2015).

    Article  Google Scholar 

  11. 11.

    Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, and D. Barker: Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 15, 1883–1892 (1984).

    Article  Google Scholar 

  12. 12.

    D. Samantaray, S. Mandal, and A. Bhaduri: Characterization of deformation instability in modified 9Cr-1Mo steel during thermo-mechanical processing. Mater. Des. 32, 716–722 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    T. Al-Samman and G. Gottstein: Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng., A 490, 411–420 (2008).

    Article  Google Scholar 

  14. 14.

    H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang: Hot workability characteristics of magnesium alloy AZ80—A study using processing map. Mater. Sci. Eng., A 527, 2022–2026 (2010).

    Article  Google Scholar 

  15. 15.

    Y. Xu, L.X. Hu, and Y. Sun: Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy. J. Alloys Compd. 580, 262–269 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan: Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2.0Zn-0.3Zr alloy based on true stress–strain curves. Mater. Sci. Eng., A 560, 727–733 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui: Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α + β starting structure using processing map. Mater. Des. 30, 1625–1631 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, and F. Yoshida: Yield-point phenomena of Ti-20V-4Al-1Sn at 1073K and its constitutive modelling. Mater. Trans. 50, 1576–1578 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    W.J. Jia, W.D. Zeng, Y.G. Zhou, J.R. Liu, and Q.J. Wang: High-temperature deformation behavior of Ti60 titanium alloy. Mater. Sci. Eng., A 528, 4068–4074 (2011).

    Article  Google Scholar 

  20. 20.

    H. Dehghan, S.M. Abbasi, and A. Momeni: On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy. J. Alloys Compd. 564, 13–19 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    G.L. Ji, F.G. Li, and Q.H. Li: A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Mater. Sci. Eng. A 528, 4774–4782 (2011).

    Article  Google Scholar 

  22. 22.

    H.J. McQueen and C.A.C. Imbert: Dynamic recrystallization: Plasticity enhancing structural development. J. Alloys Compd. 378, 35–43 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    C.M. Sellars and M.W. Tegart: On the mechanism of hot deformation. Acta Metall. 14(9), 1136–1138 (1966).

    CAS  Article  Google Scholar 

  24. 24.

    G. Meng, B. Li, H. Li, H. Huang, and Z. Nie: Hot deformation and processing maps of an Al–5.7wt%Mg alloy with erbium. Mater. Sci. Eng., A 517, 132–137 (2009).

    Article  Google Scholar 

  25. 25.

    C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22–32 (1944).

    Article  Google Scholar 

  26. 26.

    S.V.S.N. Murty, M.S. Sarma, and B.N. Rao: On the evaluation of efficiency parameters in processing maps. Metall. Mater. Trans. A 28, 1581–1582 (1997).

    Article  Google Scholar 

  27. 27.

    C.M. Sellars and W.J.M. Tegart: Hot workability. Int. Metall. Rev. 17, 1–24 (1972).

    CAS  Article  Google Scholar 

  28. 28.

    W. Sha: Crystallization and nematic–isotropic transition activation energies measured using the Kissinger method. J. Appl. Polym. Sci. 80, 2535–2537 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou: Research on the hot deformation behavior of Ti40 alloy using processing map. Mater. Sci. Eng., A 528, 1205–1211 (2011).

    Article  Google Scholar 

  30. 30.

    L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li: Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy. J. Alloys Compd. 552, 363–369 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe: Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Mater. Sci. Eng., A 361, 367–376 (2003).

    Article  Google Scholar 

  32. 32.

    J. Liu, Z. Cui, and L. Ruan: A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater. Sci. Eng., A 529, 300–310 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li: Research on the dynamic recrystallization kinetics of Aermet 100 steel. Mater. Sci. Eng., A 527, 2350–2355 (2010).

    Article  Google Scholar 

  34. 34.

    A. Najafizadeh and J.J. Jonas: Predicting the critical stress for initiation of dynamic recrystallization. ISIJ Int. 46, 1679–1684 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    G.Z. Quan, D.S. Wu, G.C. Luo, Y.F. Xia, J. Zhou, Q. Liu, and L. Gao: Dynamic recrystallization kinetics in α phase of as-cast Ti–6Al–2Zr–1Mo–1V alloy during compression at different temperatures and strain rates. Mater. Sci. Eng., A 589, 23–33 (2014).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the China National Funds for Distinguished Young Scientists (granted No. 51325401, and the National Natural Science Foundation of China (Granted No. 51302186)), the National High Technology Research and Development Program of China (Granted No. 2015AA042504) for grant and financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, H., Guo, Q. et al. Hot deformation behavior of Ti-22Al-25Nb alloy by processing maps and kinetic analysis. Journal of Materials Research 31, 1764–1772 (2016). https://doi.org/10.1557/jmr.2016.188

Download citation