Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate


Potassium titanyl phosphate crystals in both x-cut and z-cut were irradiated with 185 MeV Au ions. The morphology of the resulting ion tracks was investigated using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). SAXS measurements indicate the presence of cylindrical ion tracks with abrupt boundaries and a density contrast of 1 ± 0.5% compared to the surrounding matrix, consistent with amorphous tracks. The track radius depends on the crystalline orientation, with 6.0 ± 0.1 nm measured for ion tracks along the x-axis and 6.3 ± 0.1 nm for those along the z-axis. TEM images in both cross-section and plan-view show amorphous ion tracks with radii comparable to those determined from SAXS analysis. The protruding hillocks covering the sample surface detected by AFM are consistent with a lower density of the amorphous material within the ion tracks compared to the surrounding matrix. Simulations using an inelastic thermal-spike model indicate that differences in the thermal conductivity along the z — and x-axis can partially explain the different track radii along these directions.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5


  1. 1.

    A. Dunlop and D. Lesueur: Damage creation via electronic excitations in metallic targets part I: Experimental results. Radiat. Eff. Defects Solids 126, 123 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    A. Meftah, J.M. Costantini, N. Khalfaoui, S. Boudjadar, J.P. Stoquert, F. Studer, and M. Toulemonde: Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials. Nucl. Instrum. Methods Phys. Res., Sect. B 237, 563 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    M. Levalois, P. Bogdanski, and M. Toulemonde: Induced damage by high energy heavy ion irradiation at the GANIL accelerator in semiconductor materials. Nucl. Instrum. Methods Phys. Res., Sect. B 63, 14 (1992).

    Article  Google Scholar 

  4. 4.

    W. Wesch, A. Kamarou, and E. Wendler: Effect of high electronic energy deposition in semiconductors. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 111 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    M.C. Ridgway, T. Bierschenk, R. Giulian, B. Afra, M.D. Rodriguez, L.L. Araujo, A.P. Byrne, N. Kirby, O.H. Pakarinen, F. Djurabekova, K. Nordlund, M. Schleberger, O. Osmani, N. Medvedev, B. Rethfeld, and P. Kluth: Tracks and voids in amorphous Ge induced by swift heavy-ion irradiation. Phys. Rev. Lett. 110, 245502 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    T. Bierschenk, R. Giulian, B. Afra, M.D. Rodriguez, D. Schauries, S. Mudie, O.H. Pakarinen, F. Djurabekova, K. Nordlund, O. Osmani, N. Medvedev, B. Rethfeld, M.C. Ridgway, and P. Kluth: Latent ion tracks in amorphous silicon. Phys. Rev. B 88, 174111 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    C. Trautmann, M. Toulemonde, K. Schwartz, J.M. Costantini, and A. Mueller: Damage structure in the ionic crystal LiF irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 164–165, 365 (2000).

    Article  Google Scholar 

  8. 8.

    M. Toulemonde, E. Balanzat, S. Bouffard, and J.C. Jousset: Structural modifications induced by electronic energy deposition during the slowing down of heavy ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 39, 1 (1989).

    Article  Google Scholar 

  9. 9.

    M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, and A. Weidinger: Track formation and fabrication of nanostructures with MeV-ion beams. Nucl. Instrum. Methods Phys. Res., Sect. B 216, 1 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, and M. Toulemonde: Track formation in SiO2 quartz and the thermal-spike mechanism. Phys. Rev. B 49, 12457 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    A. Barbu, A. Dunlop, D. Lesueur, and R.S. Averback: Latent tracks do exist in metallic materials. Europhys. Lett. 15, 37 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    C. Dufour, A. Audouard, F. Beuneu, J. Dural, J.P. Girard, A. Hairie, M. Levalois, E. Paumier, and M. Toulemonde: A high-resistivity phase induced by swift heavy-ion irradiation of Bi: A probe for thermal spike damage?J. Phys. Condens. Matter 5, 4573 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    Y.S. Liu, D. Dentz, and R. Belt: High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz. Opt. Lett. 9, 76 (1984).

    Article  Google Scholar 

  14. 14.

    F.C. Zumsteg, J.D. Bierlein, and T.E. Gier: KxRb1−xTiOPO4: A new nonlinear optical material. J. Appl. Phys. 47, 4980 (1976).

    CAS  Article  Google Scholar 

  15. 15.

    F. Chen: Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev. 6, 622 (2012).

    Article  Google Scholar 

  16. 16.

    Th. Opfermann, Th. Höche, S. Klaumünzer, and W. Wesch: Formation of amorphous tracks in KTiOPO4 during swift heavy ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 954 (2000).

    Article  Google Scholar 

  17. 17.

    P. Bindner, A. Boudrioua, J.C. Loulergue, and P. Moretti: Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons. Appl. Phys. Lett. 79, 2558 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Th. Opfermann, Th. Höche, and W. Wesch: Radiation damage in KTiOPO4 by ion implantation of light elements. Nucl. Instrum. Methods Phys. Res., Sec. B 166–167, 309 (2000).

    Article  Google Scholar 

  19. 19.

    W. Wesch, Th. Opfermann, and T. Bachmann: Radiation damage in KTiOPO4 by ion implantation of light elements. Nucl. Instrum. Methods Phys. Res., Sec. B 141, 338 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    K.M. Wang and B.R. Shi: Waveguide formation of KTiOPO4 by multienergy MeV He+ implantation. J. Mater. Res. 11, 1333 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    M.D. Rodriguez, B. Afra, C. Trautmann, M. Toulemonde, T. Bierschenk, J. Leslie, R. Giulian, N. Kirby, and P. Kluth: Morphology of swift heavy ion tracks in metallic glasses. J. Non-Cryst. Solids 358, 571 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    P. Kluth, C.S. Schnohr, O.H. Pakarinen, F. Djurabekova, D.J. Sprouster, R. Giulian, M.C. Ridgway, A.P. Byrne, C. Trautmann, D.J. Cookson, K. Nordlund, and M. Toulemonde: Fine structure in swift heavy ion tracks in amorphous SiO2. Phys. Rev. Lett. 101, 175503 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    P. Kluth, C.S. Schnohr, D.J. Sprouster, A.P. Byrne, D.J. Cookson, and M.C. Ridgway: Measurement of latent tracks in amorphous SiO2 using small angle X-ray scattering. Nucl. Instrum. Methods Phys. Res., Sec. B 266, 2994 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    P. Kluth, O.H. Pakarinen, F. Djurabekova, R. Giulian, M.C. Ridgway, A.P. Byrne, and K. Nordlund: Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2. J. Appl. Phys. 110, 123520 (2011).

    Article  CAS  Google Scholar 

  25. 25.

    B. Afra, M. Lang, M.D. Rodriguez, J. Zhang, R. Giulian, N. Kirby, R.C. Ewing, C. Trautmann, M. Toulemonde, and P. Kluth: Annealing kinetics of latent particle tracks in Durango apatite. Phys. Rev. B 83, 064116 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    N.M. Kirby, S.T. Mudie, A.M. Hawley, D.J. Cookson, H.D.T. Mertens, N. Cowieson, and V. Samardzic-Boban: A low-background-intensity focusing small-angle X-ray scattering undulator beamline. J. Appl. Crystallogr. 46, 1670 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    F. Zhang, J. Ilavsky, G.G. Long, J.P.G. Quintana, A.J. Allen, and P.R. Jemian: Glassy carbon as an absolute intensity calibration standard for small-angle scattering. Metall. Mater. Trans. A 41A, 1151 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    C. Riedel and R. Spohr: Statistical properties of etched nuclear tracks I. Analytical theory and computer simulation. Radiat. Eff. 42, 69 (1979).

    Article  Google Scholar 

  29. 29.

    D. Schauries, M. Lang, O.H. Pakarinen, S. Botis, B. Afra, M.D. Rodriguez, F. Djurabekova, K. Nordlund, D. Severin, M. Bender, W.X. Li, C. Trautmann, R.C. Ewing, N. Kirby, and P. Kluth: Temperature dependence of ion track formation in quartz and apatite. J. Appl. Crystallogr. 46, 1558 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    D. Schauries, A.A. Leino, B. Afra, M.D. Rodriguez, F. Djurabekova, K. Nordlund, N. Kirby, C. Trautmann, and P. Kluth: Orientation dependent annealing kinetics of ion tracks in c-SiO2. J. Appl. Phys. 118, 224305 (2015).

    Article  CAS  Google Scholar 

  31. 31.

    M.D. Rodriguez, W.X. Li, F. Chen, C. Trautmann, T. Bierschenk, B. Afra, D. Schauries, R.C. Ewing, S.T. Mudie, and P. Kluth: SAXS and TEM investigation of ion tracks in neodymium-doped yttrium aluminium garnet. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 150 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    V.A. Skuratov, S.J. Zinkle, A.E. Efimov, and K. Havancsak: Swift heavy ion-induced modification of Al2O3 and MgO surfaces. Nucl. Instrum. Methods Phys. Res., Sect. B 203, 136 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    S.M.M. Ramos, N. Bonardi, B. Canut, S. Bouffard, and S. Della-Negra: Damage creation in α-Al2O3 by MeV fullerene impacts. Nucl. Instrum. Methods Phys. Res., Sect. B 143, 319 (1998).

    CAS  Article  Google Scholar 

  34. 34.

    Z.G. Wang, C. Dufour, E. Paumier, and M. Toulemonde: The Se sensitivity of metals under swift-heavy-ionirradiation: A transient thermal process. J. Phys.: Condens. Matter 6, 6733 (1994).

    CAS  Google Scholar 

  35. 35.

    M. Toulemonde, E. Paumier, J.M. Costantini, Ch. Dufour, A. Meftah, and F. Studer: Track creation in SiO2 and BaFe12O19 by swift heavy ions: A thermal spike description. Nucl. Instrum. Methods Phys. Res., Sect. B 116, 37 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    M. Toulemonde, C. Dufour, A. Meftah, and E. Paumier: Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 116–167, 903 (2000).

    Article  Google Scholar 

  37. 37.

    M.P.R. Waligórski, R.N. Hamm, and R. Katz: The radial distribution of dose around the path of a heavy ion in liquid water. Nucl. Tracks Radiat. Meas. 11, 309 (1986).

    Article  Google Scholar 

  38. 38.

    Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde: Ion-matter interaction: The three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions. J. Phys. D: Appl. Phys. 45, 065302 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    Y.V. Martynenko and Y.N. Yavlinskii: Cooling of the electron gas of a metal at high temperatures. Sov. Phys.-Dokl. 28, 391 (1983).

    Google Scholar 

  40. 40.

    F.F. Komarov: Defect and track formation in solids irradiated by superhigh-energy ions. Phys.-Usp. 46, 1253 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    T. Hikita, Y. Shiozaki, E. Nakamura, and T. Mitsui (ed.) Springer Materials 35A-6: 10–11, 13, 15–16 KTiOPO4[F]: 10 Light Scattering, 11 Conduction, 13 NMR, ESR, 15 Domains, 16 Miscellanea, Landolt-Börnstein—Group III Condensed Matter 36B1 (Inorganic Substances Other than Oxides. Part 1: SbSI family… TAAP) (Springer-Verlag Berlin Heidelberg ©2004).

    Google Scholar 

  42. 42.

    D.K.T. Chu, J.D. Bierlein, and G. Hunsperger: Piezoelectric and acoustic properties of potassium titanyl phosphate (KTP) and its isomorphs. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 39, 683 (1992).

    CAS  Article  Google Scholar 

  43. 43.

    D.K.T. Chu, J.D. Bierlein, and G. Hunsperger: Piezoelectric, elastic, and ferroelectric properties of KTiOPO4 and its isomorphs. In Frequency Control Symposium, 1992. 46th. Proceedings of the 1992 IEEE, 732 (1992).

  44. 44.

    W. Li, P. Kluth, D. Schauries, M.D. Rodriguez, M. Lang, F. Zhang, M. Zdorovets, C. Trautmann, and R.C. Ewing: Effect of orientation on ion track formation in apatite and zircon. Am. Mineral. 99, 1127 (2014).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Patrick Kluth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, YJ., Santiago, P.M., Rodriguez, M.D. et al. Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate. Journal of Materials Research 31, 2329–2336 (2016). https://doi.org/10.1557/jmr.2016.184

Download citation