Effects of warm rolling reduction on the microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel


As the core materials with excellent soft magnetic properties, Fe-6.5 wt% Si steel was fabricated by using the warm rolling process due to its extremely limited ductility and formability at room temperature. In this work, the effects of warm rolling reduction varying from 50% to 85% on the microstructure, texture, and magnetic properties of sheets were explored. The microstructure and texture evolution at the various processing steps were investigated in detail using optical microscopy, electron backscatter diffraction, and transmission electron microscopy. The results demonstrate that the finer recrystallization grains are accompanied with an increasing warm rolling reduction, and the final annealed sheets are characterized by strong α-fiber and γ-fiber textures. Accordingly, on the whole, as the increase of warm rolling reductions, the values of magnetic induction (B8, B50) in the final annealed sheets increase sharply up to a maximum value and then decrease to a certain value, and the values of iron loss (P15/50, P10/400) increase monotonically.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11


  1. 1.

    K.N. Kim, L.M. Pan, J.P. Lin, Y.L. Wang, Z. Lin, and G.L. Chen: The effect of boron content on the processing for Fe-6.5wt% Si electrical steel sheets. J. Magn. Magn. Mater. 277, 331 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    H.D. Fu, Q. Yang, Z.H. Zhang, and J.X. Xie: Effects of precipitated phase and order degree on bending properties of an Fe-6.5 wt% Si alloy with columnar grains. J. Mater. Res. 26, 1711 (2014).

    Article  Google Scholar 

  3. 3.

    T. Ros-Yáñez, D. Ruiz, J. Barros, and Y. Houbaert: Advances in the production of high-silicon electrical steel by thermomechanical processing and by immersion and diffusion annealing. J. Alloys Compd. 369, 125 (2004).

    Article  Google Scholar 

  4. 4.

    C.S. Li, C.L. Yang, G.J. Cai, and Q.W. Wang: Ordered phases and microhardness of Fe-6.5% Si steel sheet after hot rolling and annealing. Mater. Sci. Eng., A 650, 84 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    J. Barros, T. Ros-Yañez, L. Vandenbossche, L. Dupré, J. Melkebeek, and Y. Houbaert: The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel. J. Magn. Magn. Mater. 290–291, 1457 (2005).

    Article  Google Scholar 

  6. 6.

    Z.Y. Wu, X.A. Fan, J. Wang, G.Q. Li, Z.H. Gan, and Z. Zhang: Core loss reduction in Fe-6.5 wt% Si/SiO2 core–shell composites by ballmilling coating and spark plasma sintering. J. Alloys Compd. 617, 21 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    T. Ros-Yañez, Y. Houbaert, O. Fischer, and J. Schneider: Production of high silicon steel for electrical applications by thermomechanical processing. J. Mater. Process. Technol. 143–144, 916 (2003).

    Article  Google Scholar 

  8. 8.

    H.J. Jung and J.R. Kim: Influence of cooling rate on iron loss behavior in 6.5 wt% grain-oriented silicon steel. J. Magn. Magn. Mater. 353, 76 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    H.T. Liu, H.Z. Li, H.L. Li, F. Gao, G.H. Liu, Z.H. Luo, F.Q. Zhang, S.L. Chen, G.M. Cao, Z.Y. Liu, and G.D. Wang: Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel. J. Magn. Magn. Mater. 391, 65 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Y.D. Liu, Y.D. Zhang, Y. Ren, T. Albert, and L. Zuo: In-situ annealing study of transformation of α and γ texture of interstitial-free steel sheet by high-energy x-ray diffraction. J. Iron Steel Res. Int. 20, 38 (2013).

    Google Scholar 

  11. 11.

    Y. Hayakawa and M. Kurosawa: Orientation relationship between primary and secondary recrystallized texture in electrical steel. Acta Mater. 50, 4527 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    A. Morawiec: On abnormal growth of Goss grains in grain-oriented silicon steel. Scr. Mater. 64, 466 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    S.S.F. Dafé, S.C. Paolinelli, and A.B. Cota: Influence of thermomechanical processing on shear bands formation and magnetic properties of a 3% Si non-oriented electrical steel. J. Mater. Sci. Technol. 323, 3234 (2011).

    Google Scholar 

  14. 14.

    V. Stoyka, F. Kováč, O. Stupakov, and I. Petryshynets: Texture evolution in Fe-3% Si steel treated under unconventional annealing conditions. Mater. Charact. 61, 1066 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    R.K. Ray, J.J. Jonas, and R.E. Hook: Cold rolling and annealing texture in low carbon and extra low carbon steels. Int. Mater. Rev. 39, 129 (1994).

    CAS  Article  Google Scholar 

  16. 16.

    J. Wang, J. Li, X.F. Wang, J.J. Tian, C.H. Zhang, and S.G. Zhang: Effect of heat rate on microstructure evolution and magnetic properties of cold rolled non-oriented electrical steel. J. Iron Steel Res. Int. 17, 54 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    X.H. Bian, Y.P. Zeng, D. Nan, and M. Wu: The effect of copper precipitates on the recrystallization textures and magnetic properties of non-oriented electrical steels. J. Alloys Compd. 588, 108 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    P. Rodríguez-Calvillo, Y. Houbaert, R. Petrov, L. Kestens, and R. Colás: High temperature deformation of silicon steel. Mater. Chem. Phys. 136, 710 (2012).

    Article  Google Scholar 

  19. 19.

    Y.X. Zhang, Y.B. Xu, H.T. Liu, C.G. Li, G.M. Cao, Z.Y. Liu, and G.D. Wang: Microstructure, texture and magnetic properties of strip-cast 1.3% Si non-oriented electrical steels. J. Magn. Magn. Mater. 324, 3328 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    N. Bernier, E. Leunis, C. Furtado, T.V.D. Putte, and G. Ban: EBSD study of angular deviations from the Goss component ingrain-oriented electrical steels. Micron 54–55, 43 (2013).

    Article  Google Scholar 

  21. 21.

    J.K. Kim, D.N. Lee, and Y.M. Koo: The evolution of the Goss and Cube textures in electrical steel. Mater. Lett. 122, 110 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, Z.Y. Liu, and G.D. Wang: Evolution of cube texture in strip-cast non-oriented silicon steels. Scr. Mater. 87, 17 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    P. Ghosh, R.R. Chromik, B. Vashegi, and A.M. Knight: Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 365, 14 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    J.A. Wang, B.X. Zhou, M.Y. Yao, Q. Li, and W.J. Chen: Formation and control of sharp {100}〈021〉 texture in electrical steel. J. Iron Steel Res. Int. 13, 54 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, and L. Zuo: Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater. 76, 106 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    S. Chen, J. Butler, and S. Melzer: Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel. J. Magn. Magn. Mater. 368, 342 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    F.J.G. Landgraf, M. Emura, K. Ito, and P.S.G. Carvalho: Effect of plastic deformation on the magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 215–216, 94 (2000).

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation Project (Grant No. 51174057, 51274062), the National High Technology Research and Development Program of China (Grant No. 2012AA03A503), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130042110040).

Author information



Corresponding author

Correspondence to Changsheng Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Li, C., Cai, B. et al. Effects of warm rolling reduction on the microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel. Journal of Materials Research 31, 1773–1783 (2016). https://doi.org/10.1557/jmr.2016.179

Download citation