Competing roles of defects in SrAl2O4:Eu2+,Dy3+ phosphors detected by luminescence techniques

Abstract

Thermoluminescence (TL) and radioluminescence (RL) spectra of the long-lasting phosphorescence of SrA12O4:Eu2+,Dy3+ with A1N addition and commercially used SrA12O4:Eu2+,Dy3+ were compared. Their spectra were slowly recorded over the temperature range from 25 to 673 K (400 °C). A1N offers a higher temperature TL peak, which should lengthen the phosphor lifetime. However, both TL and RL, especially that below room temperature, reveal that there are additional decay paths for the samples of SrA12O4:Eu2+,Dy3+ with A1N additions. These new defect sites reduce the phosphor efficiency. Some speculative models of potential sites are proposed and discussed. In addition, discontinuous intensity changes have been observed for both sample types in TL and RL spectra, which are assigned to the transitions of embedded impurity phases. The justification for this model is explained. Suggestions for future experimentation are also considered.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    C.F. Palilla, K.A. Levine, and R.M. Tomkus: Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium. J. Electrochem. Soc. 115, 642 (1968).

    CAS  Article  Google Scholar 

  2. 2.

    M. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa: Phosphorescent phosphor. US Patent, 5424006 (1995).

  3. 3.

    T. Nakamura, K. Kaiya, N. Takahashi, T. Matsuzawa, C.C. Rowlands, V. Beltran-Lopez, G.M. Smith, and P.C. Riedi: High frequency EPR of europium(II)-doped strontium aluminate phosphors. J. Mater. Chem. 10, 2566 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    J. Qiu, A.L. Gaeta, and K. Hirao: Long-lasting phosphorescence in oxygen-deficient Ge-doped silica glasses at room temperature. Chem. Phys. Lett. 333, 236 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa: ChemInform abstract: A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670 (1996).

    Article  Google Scholar 

  6. 6.

    D.S. Kshatri and A. Karhre: Characterization and optical properties of doped nanocyrstalline SrAl2O4:Eu2+ phosphor. J. Alloys Compd. 588, 488 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    W. Jia, H. Yuan, L. Lu, H. Liu, and W.M. Yen: Phosphorescent dynamics in SrAl2O4:Eu2+,Dy3+ single crystal fibers. J. Lumin. 76–77, 424 (1998).

    Article  Google Scholar 

  8. 8.

    T. Aitasaloa, P. Derenc, J. Holsaa, H. Jungnerd, J.C. Krupae, M. Lastusaaria, J. Legendziewiczf, J. Niittykoskia, and W. Strękc: Persistent luminescence phenomena in material doped with rare earth ions. J. Solid State Chem. 1–2, 114 (2003).

    Article  Google Scholar 

  9. 9.

    F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, and T. Le Mercier: Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+. Chem. Mater. 17, 3904 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    T. Katsumata, T. Nabae, K. Sasajime, and T. Matsuzawa: Growth and characteristics of long persistent SrAl2O4 and CaAl2O4 based phosphor crystals by a floating zone technique. J. Cryst. Growth 183, 361 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    H. Yamamoto and T. Matsuzawa: Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+. J. Lumin. 72–74, 287 (1997).

    Article  Google Scholar 

  12. 12.

    T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, and H. Kimura: Growth and characteristics of long duration phosphor crystal. J. Cryst. Growth 198, 869 (1999).

    Article  Google Scholar 

  13. 13.

    T. Aitasalo, G. Jungnerd, M. Lastusaari, and J. Niittykoski: Mechanisms of persistent luminescence in Eu2+, Re2+ doped alkaline earth aluminates. J. Lumin. 94, 59 (2001).

    Article  Google Scholar 

  14. 14.

    R. Chen: On the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40, 570 (1969).

    CAS  Article  Google Scholar 

  15. 15.

    A. Ege, Y. Wang, and P.D. Townsend: Systematic errors in thermoluminescence. Nucl. Instrum. Methods Phys. Res., Sect. A 2–3, 411 (2007).

    Article  Google Scholar 

  16. 16.

    Y. Wang, N. Can, and P.D. Townsend: Influence of Li dopants on thermoluminescence spectra of CaSO4 doped with Dy or Tm. J. Lumin. 131, 1864 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Zhao, Y. Zhou, Y. Jiang, W. Zhou, A.A. Finch, P.D. Townsend, and Y. Wang: Ion size effects on thermoluminescence of terbium and europium doped magnesium orthosilicate. J. Mater. Res. 30, 3443 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Wang, B. Yang, N. Can, and P.D. Townsend: Correlations between low temperature thermoluminescence and oxygen vacancies in ZnO crystals. J. Appl. Phys. 109, 053508 (2011).

    Article  Google Scholar 

  19. 19.

    S.G. Raymond and P.D. Townsend: The influence of rare earth ions on the low temperature thermoluminescence of Bi4Ge3O12. J. Phys.: Condens. Matter 12, 2103 (2000).

    CAS  Google Scholar 

  20. 20.

    L. Ma, Z. Xia, and Q. Liu: Effect of A1N addition on the photoluminescence and phosphorescence properties of SrAl2O4: Eu2+,Dy3+ phosphors. Opt. Eng. 54, 067105 (2015).

    Article  Google Scholar 

  21. 21.

    B.J. Luff and P.D. Townsend: High sensitivity thermoluminescence spectrometer. Meas. Sci. Technol. 4, 65 (1993).

    Article  Google Scholar 

  22. 22.

    A.A. Finch, Y. Wang, P.D. Townsend, and M. Ingle: High sensitivity luminescence measurements of materials. in preparation.

  23. 23.

    Y. Wang and P.D. Townsend: Potential problems in collection and data processing of luminescence signals. J. Lumin. 142, 202 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    P.D. Townsend, B. Yang, and Y. Wang: Luminescence detection of phase transitions, local environment and nanoparticle inclusions. Contemp. Phys. 49, 255 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    A. Peto, P.D. Townsend, D.E. Hole, and S. Harmer: Luminescence characterisation of lattice site modifications of Nd in Nd:YAG surface layers. J. Mod. Opt. 44, 1217 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    M. Maghrabi, P.D. Townsend, and G. Vazquez: Low temperature luminescence from the near surface region of Nd:YAG. J. Phys.: Condens. Matter 13, 2497 (2001).

    CAS  Google Scholar 

  27. 27.

    M. Ayvacikli, A. Ege, and N. Can: Radioluminescence of SrAl2O4:Ln3+ (Ln = Eu, Sm, Dy) phosphor ceramic. Opt. Mater. 34, 138 (2011).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the support of the Fundamental Research Funds for the Central Universities of China, Beijing Higher Education Young Elite Teacher Project (YETP0640) and National Natural Science Foundation of China (No. 11205134).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cui, M., Zhao, Y. et al. Competing roles of defects in SrAl2O4:Eu2+,Dy3+ phosphors detected by luminescence techniques. Journal of Materials Research 31, 1403–1412 (2016). https://doi.org/10.1557/jmr.2016.177

Download citation