Facile preparation and formation mechanism of three low valent transition metal oxides in supercritical methanol


Three important low valent transition metal oxides were synthesized in supercritical methanol by using inorganic metal salts as precursors. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy were applied to analyze the composition, structure, and morphology of the products. Results showed that Cu2O, MoO2, and V2O3 were obtained successfully under a supercritical condition of 240 °C and 9.0 MPa. MoO2 and V2O3 displayed sphere-like morphology with average particle sizes of 20–40 and 20–50 nm, respectively. Cu2O particles displayed edge-truncated cubic morphology with a particle size of 2.5 µm. Formation mechanism proposed that high valent metal oxides (CuO, MoO3, and V2O5) were formed firstly in supercritical methanol by the decomposing of precursors and then reduced to target products by free hydroxyl anions. In addition, methanol performed important roles not only as a reaction medium but also as a reducing agent under supercritical fluid conditions.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5


  1. 1.

    C.H. Kuo and M.H. Huang: Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 5, 106–116 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    H. Hu, J. Xu, C. Deng, and X. Ge: Easily controllable synthesis of alpha-MoO3 nanobelts and MoO2 microaxletrees through one-pot hydrothermal route. J. Nanosci. Nanotechnol. 14, 4462–4468 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    A.C. Santulli, W. Xu, J.B. Parise, L. Wu, M.C. Aronson, F. Zhang, C.Y. Nam, C.T. Black, A.L. Tiano, and S.S. Wong: Synthesis and characterization of V2O3 nanorods. Phys. Chem. Chem. Phys. 11, 3718–3726 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Zhao, W. Wang, Y. Li, Y. Zhang, Z. Yan, and Z. Huo: Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production. Nanoscale 6, 195–198 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    B. Koo, H. Xiong, M.D. Slater, V.B. Prakapenka, M. Balasubramanian, P. Podsiadlo, C.S. Johnson, T. Rajh, and E.V. Shevchenko: Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 12, 2429–2435 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    L. Guan, H. Pang, J. Wang, Q. Lu, J. Yin, and F. Gao: Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem. Commun. 46, 7022–7024 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Y.H. Tsai, K. Chanda, Y.T. Chu, C.Y. Chiu, and M.H. Huang: Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale 6, 8704–8709 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    L. Wu, P.O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, and S. Sun: Monolayer assembly of ferrimagnetic Co(x)Fe(3− x)O4 nanocubes for magnetic recording. Nano Lett. 14, 3395–3399 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Xu, H. Wang, Y. Yu, L. Tian, W. Zhao, and B. Zhang: Cu2O Nanocrystals: Surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities. J. Phys. Chem. C 115, 15288–15296 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    R. Srivastava, M.U. Anu Prathap, and R. Kore: Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue. Colloids Surf., A 392, 271–282 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    H-Y. Wu, M-H. Hon, C-Y. Kuan, and I-C. Leu: Preparation of TiO2 nanosheets by a hydrothermal process and their application as an anode for lithium-ion batteries. J. Electron. Mater. 43, 1048–1054 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    D.S. Wang, T. Xie, Q. Peng, S.Y. Zhang, J. Chen, and Y.D. Li: Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem.–Eur. J. 14, 2507–2513 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    V.V. Lenka Matějová, R. Fajgar, Z. Matěj, V. Holý, and O. Šolcová: Reverse micelles directed synthesis of TiO2–CeO2 mixed oxides and investigation of their crystal structure and morphology. J. Solid State Chem. 198, 485–495 (2013).

    Article  CAS  Google Scholar 

  14. 14.

    M.D. Susman, Y. Feldman, A. Vaskevich, and I. Rubinstein: Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 8, 162–174 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    L.M. Sikhwivhilu, S.K. Pillai, and T.K. Hillie: Influence of citric acid on SnO2 nanoparticles synthesized by wet chemical processes. J. Nanosci. Nanotechnol. 11, 4988–4994 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    D. Wang and Y. Li: Controllable synthesis of Cu-based nanocrystals in ODA solvent. Chem. Commun. 47, 3604–3606 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang: A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun. 15, (2003) 1884–1885.

    Article  CAS  Google Scholar 

  18. 18.

    X. Liang, L. Gao, S. Yang, and J. Sun: Facile synthesis and shape evolution of single-crystal cuprous oxide. Adv. Mater. 21, 2068–2071 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, and C. Dendrinou-Samara: Selective synthesis of Cu2O and Cu/Cu2O NPs: Antifungal activity to yeast saccharomyces cerevisiae and DNA interaction. Inorg. Chem. 53, 9657–9666 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    C.V. Ramana, S. Utsunomiya, R.C. Ewing, and U. Becker: Formation of V2O3 nanocrystals by thermal reduction of V2O5 thin films. Solid State Commun. 137, 645–649 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    C. Zheng, X. Zhang, S. He, Q. Fu, and D. Lei: Preparation and characterization of spherical V2O3 nanopowder. J. Solid State Chem. 170, 221–226 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    F. Sediri and N. Gharbi: Hydrothermal synthesis and characterization of V2O3. Mater. Sci. Eng., B 123, 136–138 (2005).

    Article  CAS  Google Scholar 

  23. 23.

    K. Zhang, X. Sun, G. Lou, X. Liu, H. Li, and Z. Su: A new method for preparing V2O3 nanopowder. Mater. Lett. 59, 2729–2731 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.S. Hu, K.R. Heier, L. Chen, R. Seshadri, and G.D. Stucky: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9, 4215–4220 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    L.C. Yang, Q.S. Gao, Y. Tang, Y.P. Wu, and R. Holze: MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. J. Power Sources 179, 357–360 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    B. Veriansyah, J-D. Kim, B.K. Min, and J. Kim: Continuous synthesis of magnetite nanoparticles in supercritical methanol. Mater. Lett. 64, 2197–2200 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    S. Desmoulins-Krawiec, C. Aymonier, and A. Loppinet-Serani, F.O. Weill, S.P. Gorsse, J. Etourneau, and F.O. Cansell: Synthesis of nanostructured materials in supercritical ammonia: Nitrides, metals and oxides. J. Mater. Chem. 14, 228 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    N.C. Shin, Y-H. Lee, Y.H. Shin, J. Kim, and Y-W. Lee: Synthesis of cobalt nanoparticles in supercritical methanol. Mater. Chem. Phys. 124, 140–144 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    F. Cansell and C. Aymonier: Design of functional nanostructured materials using supercritical fluids. J. Supercrit. Fluids 47, 508–516 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    J-Y. Chang, J-J. Chang, B. Lo, S-H. Tzing, and Y-C. Ling: Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water. Chem. Phys. Lett. 379, 261–267 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    K.J. Ziegler, R.C. Doty, K.P. Johnston, and B.A. Korgel: Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. J. Am. Chem. Soc. 123, 7797–7803 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    K. Sue, A. Suzuki, M. Suzuki, K. Arai, Y. Hakuta, H. Hayashi, and T. Hiaki: One-Pot synthesis of nickel particles in supercritical water. Ind. Eng. Chem. Res. 45, 623–626 (2005).

    Article  CAS  Google Scholar 

  33. 33.

    S. Marre, F. Cansell, and C. Aymonier: Design at the nanometre scale of multifunctional materials using supercritical fluid chemical deposition. Nanotechnology 17, 4594–4599 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    C. Slostowski, S. Marre, O. Babot, T. Toupance, and C. Aymonier: Near- and supercritical alcohols as solvents and surface modifiers for the continuous synthesis of cerium oxide nanoparticles. Langmuir 28, 16656–16663 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    O. Pascu, S. Marre, C. Aymonier, and A. Roig: Ultrafast and continuous synthesis of crystalline ferrite nanoparticles in supercritical ethanol. Nanoscale 5, 2126–2132 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    J. Kim, D. Kim, B. Veriansyah, J. Won Kang, and J-D. Kim: Metal nanoparticle synthesis using supercritical alcohol. Mater. Lett. 63, 1880–1882 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    H. Choi, B. Veriansyah, J. Kim, J-D. Kim, and J.W. Kang: Continuous synthesis of metal nanoparticles in supercritical methanol. J. Supercrit. Fluids 52, 285–291 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    B. Veriansyah, M-S. Chun, and J. Kim: Surface-modified cerium oxide nanoparticles synthesized continuously in supercritical methanol: Study of dispersion stability in ethylene glycol medium. Chem. Eng. J. 168, 1346–1351 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    A. Nugroho, S.J. Kim, W. Chang, K.Y. Chung, and J. Kim: Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. J. Power Sources 244, 164–169 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    X. Liu, Y. Zhang, S. Yi, C. Huang, J. Liao, H. Li, D. Xiao, and H. Tao: Preparation of V2O3 nanopowders by supercritical fluid reduction. J. Supercrit. Fluids 56, 194–200 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    S. Yu, S. Li, X. Ge, M. Niu, H. Zhang, C. Xu, and W. Li: Influence of reducing atmosphere of subcritical/supercritical mild alcohols on the synthesis of copper powder. Ind. Eng. Chem. Res. 53, 2238–2243 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    S. Li, X. Ge, S. Jiang, X. Peng, Z. Zhang, W. Li, and S. Yu: Synthesis of octahedral and cubic Cu2O microcrystals in sub- and super-critical methanol and their photocatalytic performance. J. Mater. Sci. 50, 4115–4121 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    V. Pessey, R. Garriga, F. Weill, B. Chevalier, J. Etourneau, and F. Cansell: Control of particle growth by chemical transformation in supercritical CO2/ethanol mixtures. J. Mater. Chem. 12, 958–965 (2002).

    CAS  Article  Google Scholar 

  44. 44.

    K.M.K. Selim, J-H. Lee, S-J. Kim, Z. Xing, I-K. Kang, Y. Chang, and H. Guo: Surface modification of magnetites using maltotrionic acid and folic acid for molecular imaging. Macromol. Res. 14, 646–653 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    K.K. Selim, Z.C. Xing, M.J. Choi, Y. Chang, H. Guo, and I.K. Kang: Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer. Nanoscale Res. Lett. 6, 528 (2011).

    Article  CAS  Google Scholar 

  46. 46.

    J-M. Andanson, P.A. Bopp, and J-C. Soetens: Relation between hydrogen bonding and intramolecular motions in liquid and supercritical methanol. J. Mol. Liq. 129, 101–107 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    D.T. Sawyer and J.L. Roberts: Hydroxide ion: An effective one-electron reducing agent? Acc. Chem. Res. 21, 469–476 (1988).

    CAS  Article  Google Scholar 

  48. 48.

    S.D. Gardner, C.S.K. Singamsetty, G.L. Booth, G-R. He, and C.U. Pittman: Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 33, 587–595 (1995).

    CAS  Article  Google Scholar 

  49. 49.

    K. Chen and D. Xue: Crystallisation of cuprous oxide. Int. J. Nanotechnol. 10, 4–12 (2013).

    Article  Google Scholar 

  50. 50.

    X. Wang, S. Jiao, D. Wu, Q. Li, J. Zhou, K. Jiang, and D. Xu: A facile strategy for crystal engineering of Cu2O polyhedrons with high-index facets. CrystEngComm 15, 1849 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, and R.P. Van Duyne: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007).

    CAS  Article  Google Scholar 

  52. 52.

    B. Hu, L. Mai, W. Chen, and F. Yang: From MoO3 nanobelts to MoO2 nanorods: Structure transformation and electrical transport. ACS Nano 3, 478–482 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    D. Weber, A. Stork, S. Nakhal, C. Wessel, C. Reimann, W. Hermes, A. Muller, T. Ressler, R. Pottgen, T. Bredow, R. Dronskowski, and M. Lerch: Bixbyite-type V2O3—a metastable polymorph of vanadium sesquioxide. Inorg. Chem. 50, 6762–6766 (2011).

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial supports by the Program for Liaoning Excellent Talents in University, China (Grant No. LR2012012) and (Grant No. LJQ2012034), and the Scientific Research Fund of Liaoning Provincial Education Department, China (Grant No. L2015423).

Author information



Corresponding author

Correspondence to Sansan Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, Z., Jiang, S. et al. Facile preparation and formation mechanism of three low valent transition metal oxides in supercritical methanol. Journal of Materials Research 31, 1440–1447 (2016). https://doi.org/10.1557/jmr.2016.149

Download citation