Effect of annealing treatment on the microstructures, mechanical, and wear properties of a manganese brass alloy

Abstract

The effect of annealing treatment on the microstructures, mechanical, and wear properties of a CuZnAlMnSiNiCr brass alloy is investigated. The results indicate that nanosized Mn5Si3 particles are observed to precipitate from the β phase at temperatures above 750 °C. After annealing at 800 °C for 4 h, the formation of finely, coherent precipitates dispersed within the matrix results in the great improvement of strength, hardness and thus the high wear resistance, which can be proven by the decreased wear rates and friction coefficients. According to the examination of the wear topography, adhesive, abrasive, and oxidative wear are found to be the major wear forms during the dry sliding wear. After the precipitation-hardening treatment, the adhesion and abrasion decrease, and few spallings and cracks are observed on the worn surfaces. In addition, the wear behavior of the alloy is found to be strongly dependent on its strength and hardness.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

References

  1. 1.

    H.S. Kim, W.Y. Kim, and K.H. Song: Effect of post-heat-treatment in ECAP processed Cu–40%Zn brass. J. Alloys Compd. 536S, S200–S203 (2012).

    Article  Google Scholar 

  2. 2.

    R. Kumar, S.M. Dasharath, P.C. Kang, C.C. Koch, and S. Mula: Enhancement of mechanical properties of low stacking fault energy brass processed by cryorolling followed by short-annealing. Mater. Des. 67, 637–643 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    K. Elleuch, R. Elleuch, R. Mnif, V. Fridrici, and P. Kapsa: Sliding wear transition for the CW614 brass alloy. Tribol. Int. 39, 290–296 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    H. Mindivan, H. Çimenoglu, and E.S. Kayali: Microstructures and wear properties of brass synchroniser rings. Wear 254, 532–537 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    A. Waheed and N. Ridley: Microstructure and wear of some high-tensile brasses. J. Mater. Sci. 29, 1692–1699 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    M. Sundberg, R. Sundberg, S. Hogmark, S. Otterberg, B. Lehtinen, S.E. Hörnström, and S.E. Karlsson. Metallographic aspects on wear of special brass. Wear 115, 151–165 (1987).

    CAS  Article  Google Scholar 

  7. 7.

    Y.S. Sun, G.W. Lorimer, and N. Ridley: Microstructure of high-tensile strength brasses containing silicon and manganese. Metall. Mater. Trans. A 20, 1199–1206 (1989).

    Article  Google Scholar 

  8. 8.

    D. Odabas and S. Su: A comparison of the reciprocating and continuous two-body abrasive wear behavior of solution-treated and age-hardened 2014 Al alloy. Wear 208, 25–35 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    A. Wang and H.J. Rack: Abrasive wear of silicon carbide particulate- and whisker-reinforced 7091 aluminum matrix composite. Wear 146, 337–348 (1991).

    CAS  Article  Google Scholar 

  10. 10.

    E. Feyzullahoglu, A. Zeren, and M. Zeren: Tribological behaviour of tin-based materials and brass in oil lubricated conditions. Mater. Des. 29, 714–720 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    M. Cetin: Wear behaviour of CuZn34Al2 brass material. Technology 12, 227–233 (2009).

    Google Scholar 

  12. 12.

    R.O. Galicia, C.G. Garcia, M.A. Alcantara, and A.H. Vazquez: Influence of heat treatment and composition variations on microstructure, hardness, and wear resistance of C 18000 copper alloy. ISRN Mech. Eng. 2012, 1–6 (2012).

    Article  Google Scholar 

  13. 13.

    Y.R. Liu: Effects of aging on shape memory and wear resistance of a Fe–Mn–Si-based alloy. J. Mater. Res. 29, 2809–2816 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    C. Meric, E. Atik, and H. Kacar: Effect of aging on the abrasive wear properties of AlMgSi1 alloy. Mater. Des. 27, 1180–1186 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    E.K. Arthur, E. Ampaw, M.G. Zebaze Kana, A.R. Adetunji, S.O.O. Olusunle, O.O. Adewoye, and W.O. Soboyejo: Nano- and macro-wear of bio-carbo-nitrided AISI 8620 steel surfaces. Metall. Mater. Trans. A 46, 5810–5829 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    E.K. Arthur, E. Ampaw, M.G. Zebaze Kana, A.R. Adetunji, O.O. Adewoye, and W.O. Soboyejo: Surface hardening of AISI 8620 steel with cassava (manihot spp.) waste, Waste Biomass Valorization (2016) DOI: https://doi.org/10.1007/s12649-016-9479-3.

  17. 17.

    J.F. Archard: Contact and rubbing of flat surfaces. J. Appl. Phys. 4, 981–988 (1953).

    Article  Google Scholar 

  18. 18.

    H. Li, J.C. Jie, H. Chen, P.C. Zhang, T.M. Wang, and T.J. Li: Effect of rotating magnetic field on the microstructure and properties of Cu–Ag–Zr alloy. Mater. Sci. Eng., A 324, 140–147 (2015).

    Article  Google Scholar 

  19. 19.

    H.O. Zhuo, J.C. Tang, and N. Ye: A novel approach for strengthening Cu–Y2O3 composites by in situ reaction at liquidus temperature. Mater. Sci. Eng., A 584, 1–6 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    S.E. Broyles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Creep deformation of dispersion-strengthened copper. Metall. Mater. Trans. A 27, 1217–1227 (1996).

    Article  Google Scholar 

  21. 21.

    W. Ma, J. Lu, and B. Wang: Sliding friction and wear of Cu–graphite against 2024, AZ91D and Ti6Al4V at different speeds. Wear 266, 1072–1081 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    J. Zhang and A.T. Alpas: Transition between mild and severe wear in aluminium alloys. Acta Mater. 45, 513–528 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    M. Shafiei and A.T. Alpas: Effect of sliding speed on friction and wear behaviour of nanocrystalline nickel tested in an argon atmosphere. Wear 265, 429–438 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    G. Straffelini, M. Pellizzari, and L. Maines: Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear 270, 714–719 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    R.L. Deuis, C. Subramanian, and J.M. Yellup: Dry sliding wear of aluminium composites-a review. Compos. Sci. Technol. 57, 415–435 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    G. Purcek, H. Yanar, O. Saray, I. Karamanc, and H.J. Maier: Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy. Wear 311, 149–158 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    X.L. Kong, Y.B. Liu, and L.J. Qiao. Dry sliding tribological behaviors of nanocrystalline Cu–Zn surface layer after annealing in air. Wear 256, 747–753 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    C.N. Panagopoulos, E.P. Georgiou, and K. Simeonidis: Lubricated wear behavior of leaded α + β brass. Tribol. Int. 50, 1–5 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    J. Xia, C.X. Li, and H. Dong: Thermal oxidation treatment of B2 iron aluminide for improved wear resistance. Wear 258, 1804–1812 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    J. Zhang and A.T. Alpas: Delamination wear in ductile materials containing second phase particles. Mater. Sci. Eng., A 160, 25–35 (1993).

    Article  Google Scholar 

  31. 31.

    W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, and M.S. Liu: Microstructure and tribological behavior of a peak aged Cu–/Cr–Zr alloy. Mater. Sci. Eng., A 343, 89–96 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the National Natural Science Foundation of China, People’s Republic of China (Nos 51501028 and 51471042), to whom we are very grateful.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Jie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jie, J., Zhang, Q. et al. Effect of annealing treatment on the microstructures, mechanical, and wear properties of a manganese brass alloy. Journal of Materials Research 31, 1491–1500 (2016). https://doi.org/10.1557/jmr.2016.136

Download citation