Abstract
In the present study, the surface properties and the corrosion behavior of a nanocrystalline surface layer fabricated on 45 steel by electropulsing-ultrasonic surface treatment (EUST) were investigated. EUST offered the specimen a smooth (Ra < 0.33 µm) surface layer with nanoscale grains and compressive stress by the synergistic effect of high-energy electropulsing processing and ultrasonic impact. Open-circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy studies indicated that EUST-induced surface nanocrystallization decreased the corrosion susceptibility of 45 steel in 3.5 wt% NaCl aqueous solution, leading to a decrease in corrosion current density (icorr) by 55% and an increase in charge transfer resistance (Rct) by 36%. The enhancement in surface comprehensive mechanical properties and corrosion resistance can be explained in terms of the decrease in surface roughness, the extent of grain refinement and the change of stress state, which were closely related to the introduction of high-energy electropulsing processing.
This is a preview of subscription content, access via your institution.












References
- 1.
K. Dai, J. Villegas, Z. Stone, and L. Shaw: Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Mater. 52 (20), 5771 (2004).
- 2.
M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina, and R.Z. Valiev: Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 48, 4501 (2013).
- 3.
F. Yin, S. Hu, L. Hua, X. Wang, S. Suslov, and Q. Han: Surface nanocrystallization and numerical modeling of low carbon steel by means of ultrasonic shot peening. Metall. Mater. Trans. A 46 (3), 1253 (2015).
- 4.
K. Lu and J. Lu: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375–377, 38 (2004).
- 5.
M. Ya, Y. Xing, F. Dai, K. Lu, and J. Lu: Study of residual stress in surface nanostructured AISI 316L stainless steel using two mechanical methods. Surf. Coat. Technol. 168 (2), 148 (2003).
- 6.
J. Yanbin, T. Guoyi, G. Lei, W. Shaonan, X. Zhuohui, S. Chanhung, and Z. Yaohua: Effect of electropulsing treatment on solid solution behavior of an aged Mg alloy AZ61 strip. J. Mater. Res. 23 (10), 2685 (2008).
- 7.
L. Guan, G.Y. Tang, P.K. Chu, and Y.B. Jiang: Enhancement of ductility in Mg–3Al–1Zn alloy with tilted basal texture by electropulsing. J. Mater. Res. 24 (12), 3674 (2009).
- 8.
D.B. Hamal and K.J. Klabunde: Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light. J. Phys. Chem. C 115 (35), 17359 (2011).
- 9.
N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50 (18), 4603 (2002).
- 10.
H. Han, Y. Gao, Y. Zhang, S. Du, and H. Liu: Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field. Wear 328–329, 422 (2015).
- 11.
E.E. Oguzie, Y. Li, and F. Wang: Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: Synergistic effect of methionine and iodide ion. Electrochim. Acta 52 (24), 6988 (2007).
- 12.
M. Laleh and F. Kargar: Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J. Alloys Compd. 509 (37), 9150 (2011).
- 13.
E.E. Oguzie, S.G. Wang, Y. Li, and F.H. Wang: Corrosion and corrosion inhibition characteristics of bulk nanocrystalline ingot iron in sulphuric acid. J. Solid State Electrochem. 12 (6), 721 (2008).
- 14.
S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, and C. Demangel: Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf. Coat. Technol. 224, 82 (2013).
- 15.
J.X. Yang, F.Z. Cui, I-S. Lee, Y. Zhang, Q.S. Yin, H. Xia, and S.X. Yang: In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J. Biomater. Appl. 27 (2), 153 (2011).
- 16.
J. Yanbin, T. Guoyi, S. Chanhung, Z. Yaohua, G. Lei, W. Shaonan, and X. Zhuohui: Improved ductility of aged Mg–9Al–1Zn alloy strip by electropulsing treatment. J. Mater. Res. 24 (5), 1810 (2009).
- 17.
X. Ye, G. Tang, G. Song, and J. Kuang: Effect of electropulsing treatment on the microstructure, texture, and mechanical properties of cold-rolled Ti–6Al–4V alloy. J. Mater. Res. 29 (14), 1500 (2014).
- 18.
A. Rahnama and R.S. Qin: The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater. Sci. Eng., A 627, 145 (2015).
- 19.
W.J. Lu, X.F. Zhang, and R.S. Qin: Electropulsing-induced strengthening of steel at high temperature. Philos. Mag. Lett. 94 (11), 688 (2014).
- 20.
J. Kuang, X. Li, X. Ye, J. Tang, H. Liu, J. Wang, and G. Tang: Microstructure and texture evolution of magnesium alloys during electropulse treatment. Metall. Mater. Trans. A 46 (4), 1789 (2015).
- 21.
X. Ye, T. Liu, Y. Ye, H. Wang, G. Tang, and G. Song: Enhanced grain refinement and microhardness of Ti–Al–V alloy by electropulsing ultrasonic shock. J. Alloys Compd. 621, 66 (2015).
- 22.
X. Ye, J. Kuang, X. Li, and G. Tang: Microstructure, properties and temperature evolution of electro-pulsing treated functionally graded Ti–6Al–4V alloy strip. J. Alloys Compd. 599, 1 (2014).
- 23.
E. Maawad, H-G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel: Investigation on the surface and near-surface characteristics of Ti–2.5Cu after various mechanical surface treatments. Surf. Coat. Technol. 205 (12), 3644 (2011).
- 24.
X. Ye, Y. Yang, and G. Tang: Microhardness and corrosion behavior of surface gradient oxide coating on the titanium alloy strips under high energy electro-pulsing treatment. Surf. Coat. Technol. 258, 467 (2014).
- 25.
X. Ye, Z.T.H. Tse, G. Tang, and G. Song: The effect of electropulsing induced gradient topographic oxide coating of Ti–Al–V alloy strips on the fibroblast adhesion and growth. Surf. Coat. Technol. 261, 213 (2015).
- 26.
X. Ye, L. Wang, Z.T.H. Tse, G. Tang, and G. Song: Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti–6Al–4V alloy. Mater. Sci. Eng., C 49, 851 (2015).
- 27.
T. Balusamy, S. Kumar, and T.S.N. Sankara Narayanan: Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel. Corros. Sci. 52 (11), 3826 (2010).
- 28.
S. Kumar and T.S.N. Sankara Narayanan: Corrosion behavior of Ti–15Mo alloy for dental implant applications. J. Dent. 36 (7), 500 (2008).
- 29.
X. Ye, X. Li, G. Song, and G. Tang: Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J. Alloys Compd. 616, 173 (2014).
- 30.
Y. Zhou, W. Zhang, B. Wang, G. He, and J. Guo: Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. J. Mater. Res. 17 (08), 2105 (2002).
- 31.
X. Ye, Y. Yang, G. Song, and G. Tang: Enhancement of ductility, weakening of anisotropy behavior and local recrystallization in cold-rolled Ti–6Al–4V alloy strips by high-density electropulsing treatment. Appl. Phys. A: Mater. Sci. Process. 117 (4), 2251 (2014).
- 32.
F. Wang, D. Huo, S. Li, and Q. Fan: Inducing TiAl3 in titanium alloys by electric pulse heat treatment improves mechanical properties. J. Alloys Compd. 550, 133 (2013).
- 33.
H.B. Ouici, O. Benali, Y. Harek, L. Larabi, B. Hammouti, and A. Guendouzi: The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 5% hydrochloric acid. Res. Chem. Intermed. 39 (7), 3089 (2013).
- 34.
S. Bılgıç and N. Çalıskan: The effect of N-(1-toluidine) salicylaldimine on the corrosion of austenitic chromium–nickel steel. Appl. Surf. Sci. 152 (1), 107 (1999).
- 35.
E. Arslan, Y. Totik, E. Demirci, and A. Alsaran: Influence of surface roughness on corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. J. Mater. Eng. Perform. 19 (3), 428 (2010).
- 36.
S. Yin, D.Y. Li, and R. Bouchard: Effects of strain rate of prior deformation on corrosion and corrosive wear of AISI 1045 steel in a 3.5 Pct NaCl solution. Metall. Mater. Trans. A 38 (5), 1032 (2007).
- 37.
S. Hassani, K. Raeissi, M. Azzi, D. Li, M.A. Golozar, and J.A. Szpunar: Improving the corrosion and tribocorrosion resistance of Ni–Co nanocrystalline coatings in NaOH solution. Corros. Sci. 51 (10), 2371 (2009).
- 38.
P.B. Srinivasan, R. Zettler, C. Blawert, and W. Dietzel: Stress corrosion cracking of AZ61 magnesium alloy friction stir weldments in ASTM D1384 solution. Corros. Eng., Sci. Technol. 44, 477 (2009).
- 39.
D.A. LÓpez, S.N. Simison, and S.R. de Sànchez: The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 48 (7), 845 (2003).
- 40.
M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée: The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: Structure-activity correlation. Corros. Sci. 48 (5), 1279 (2006).
ACKNOWLEDGMENTS
This project is supported by Science and Technology Research Funding Project of Guangdong Province (Grant no. 2014B090901029) and Research & Development Funding Project of Shenzhen (Grant no. JCYJ20140417115840280 and CXZZ20140702113545562).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, B., Wang, H., Zhang, S. et al. Effect of electropulsing-ultrasonic surface treatment on the surface properties and the corrosion behavior of 45 steel. Journal of Materials Research 31, 2114–2124 (2016). https://doi.org/10.1557/jmr.2016.126
Received:
Accepted:
Published:
Issue Date: