Effect of electropulsing-ultrasonic surface treatment on the surface properties and the corrosion behavior of 45 steel

Abstract

In the present study, the surface properties and the corrosion behavior of a nanocrystalline surface layer fabricated on 45 steel by electropulsing-ultrasonic surface treatment (EUST) were investigated. EUST offered the specimen a smooth (Ra < 0.33 µm) surface layer with nanoscale grains and compressive stress by the synergistic effect of high-energy electropulsing processing and ultrasonic impact. Open-circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy studies indicated that EUST-induced surface nanocrystallization decreased the corrosion susceptibility of 45 steel in 3.5 wt% NaCl aqueous solution, leading to a decrease in corrosion current density (icorr) by 55% and an increase in charge transfer resistance (Rct) by 36%. The enhancement in surface comprehensive mechanical properties and corrosion resistance can be explained in terms of the decrease in surface roughness, the extent of grain refinement and the change of stress state, which were closely related to the introduction of high-energy electropulsing processing.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    K. Dai, J. Villegas, Z. Stone, and L. Shaw: Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Mater. 52 (20), 5771 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina, and R.Z. Valiev: Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 48, 4501 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    F. Yin, S. Hu, L. Hua, X. Wang, S. Suslov, and Q. Han: Surface nanocrystallization and numerical modeling of low carbon steel by means of ultrasonic shot peening. Metall. Mater. Trans. A 46 (3), 1253 (2015).

    Article  Google Scholar 

  4. 4.

    K. Lu and J. Lu: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375–377, 38 (2004).

    Article  Google Scholar 

  5. 5.

    M. Ya, Y. Xing, F. Dai, K. Lu, and J. Lu: Study of residual stress in surface nanostructured AISI 316L stainless steel using two mechanical methods. Surf. Coat. Technol. 168 (2), 148 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    J. Yanbin, T. Guoyi, G. Lei, W. Shaonan, X. Zhuohui, S. Chanhung, and Z. Yaohua: Effect of electropulsing treatment on solid solution behavior of an aged Mg alloy AZ61 strip. J. Mater. Res. 23 (10), 2685 (2008).

    Article  Google Scholar 

  7. 7.

    L. Guan, G.Y. Tang, P.K. Chu, and Y.B. Jiang: Enhancement of ductility in Mg–3Al–1Zn alloy with tilted basal texture by electropulsing. J. Mater. Res. 24 (12), 3674 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    D.B. Hamal and K.J. Klabunde: Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light. J. Phys. Chem. C 115 (35), 17359 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50 (18), 4603 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    H. Han, Y. Gao, Y. Zhang, S. Du, and H. Liu: Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field. Wear 328–329, 422 (2015).

    Article  Google Scholar 

  11. 11.

    E.E. Oguzie, Y. Li, and F. Wang: Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: Synergistic effect of methionine and iodide ion. Electrochim. Acta 52 (24), 6988 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    M. Laleh and F. Kargar: Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J. Alloys Compd. 509 (37), 9150 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    E.E. Oguzie, S.G. Wang, Y. Li, and F.H. Wang: Corrosion and corrosion inhibition characteristics of bulk nanocrystalline ingot iron in sulphuric acid. J. Solid State Electrochem. 12 (6), 721 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, and C. Demangel: Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf. Coat. Technol. 224, 82 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    J.X. Yang, F.Z. Cui, I-S. Lee, Y. Zhang, Q.S. Yin, H. Xia, and S.X. Yang: In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J. Biomater. Appl. 27 (2), 153 (2011).

    Article  Google Scholar 

  16. 16.

    J. Yanbin, T. Guoyi, S. Chanhung, Z. Yaohua, G. Lei, W. Shaonan, and X. Zhuohui: Improved ductility of aged Mg–9Al–1Zn alloy strip by electropulsing treatment. J. Mater. Res. 24 (5), 1810 (2009).

    Article  Google Scholar 

  17. 17.

    X. Ye, G. Tang, G. Song, and J. Kuang: Effect of electropulsing treatment on the microstructure, texture, and mechanical properties of cold-rolled Ti–6Al–4V alloy. J. Mater. Res. 29 (14), 1500 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    A. Rahnama and R.S. Qin: The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater. Sci. Eng., A 627, 145 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    W.J. Lu, X.F. Zhang, and R.S. Qin: Electropulsing-induced strengthening of steel at high temperature. Philos. Mag. Lett. 94 (11), 688 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    J. Kuang, X. Li, X. Ye, J. Tang, H. Liu, J. Wang, and G. Tang: Microstructure and texture evolution of magnesium alloys during electropulse treatment. Metall. Mater. Trans. A 46 (4), 1789 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    X. Ye, T. Liu, Y. Ye, H. Wang, G. Tang, and G. Song: Enhanced grain refinement and microhardness of Ti–Al–V alloy by electropulsing ultrasonic shock. J. Alloys Compd. 621, 66 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    X. Ye, J. Kuang, X. Li, and G. Tang: Microstructure, properties and temperature evolution of electro-pulsing treated functionally graded Ti–6Al–4V alloy strip. J. Alloys Compd. 599, 1 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    E. Maawad, H-G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel: Investigation on the surface and near-surface characteristics of Ti–2.5Cu after various mechanical surface treatments. Surf. Coat. Technol. 205 (12), 3644 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    X. Ye, Y. Yang, and G. Tang: Microhardness and corrosion behavior of surface gradient oxide coating on the titanium alloy strips under high energy electro-pulsing treatment. Surf. Coat. Technol. 258, 467 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    X. Ye, Z.T.H. Tse, G. Tang, and G. Song: The effect of electropulsing induced gradient topographic oxide coating of Ti–Al–V alloy strips on the fibroblast adhesion and growth. Surf. Coat. Technol. 261, 213 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    X. Ye, L. Wang, Z.T.H. Tse, G. Tang, and G. Song: Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti–6Al–4V alloy. Mater. Sci. Eng., C 49, 851 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    T. Balusamy, S. Kumar, and T.S.N. Sankara Narayanan: Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel. Corros. Sci. 52 (11), 3826 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    S. Kumar and T.S.N. Sankara Narayanan: Corrosion behavior of Ti–15Mo alloy for dental implant applications. J. Dent. 36 (7), 500 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    X. Ye, X. Li, G. Song, and G. Tang: Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J. Alloys Compd. 616, 173 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Zhou, W. Zhang, B. Wang, G. He, and J. Guo: Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. J. Mater. Res. 17 (08), 2105 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    X. Ye, Y. Yang, G. Song, and G. Tang: Enhancement of ductility, weakening of anisotropy behavior and local recrystallization in cold-rolled Ti–6Al–4V alloy strips by high-density electropulsing treatment. Appl. Phys. A: Mater. Sci. Process. 117 (4), 2251 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    F. Wang, D. Huo, S. Li, and Q. Fan: Inducing TiAl3 in titanium alloys by electric pulse heat treatment improves mechanical properties. J. Alloys Compd. 550, 133 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    H.B. Ouici, O. Benali, Y. Harek, L. Larabi, B. Hammouti, and A. Guendouzi: The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 5% hydrochloric acid. Res. Chem. Intermed. 39 (7), 3089 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    S. Bılgıç and N. Çalıskan: The effect of N-(1-toluidine) salicylaldimine on the corrosion of austenitic chromium–nickel steel. Appl. Surf. Sci. 152 (1), 107 (1999).

    Article  Google Scholar 

  35. 35.

    E. Arslan, Y. Totik, E. Demirci, and A. Alsaran: Influence of surface roughness on corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. J. Mater. Eng. Perform. 19 (3), 428 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    S. Yin, D.Y. Li, and R. Bouchard: Effects of strain rate of prior deformation on corrosion and corrosive wear of AISI 1045 steel in a 3.5 Pct NaCl solution. Metall. Mater. Trans. A 38 (5), 1032 (2007).

    Article  Google Scholar 

  37. 37.

    S. Hassani, K. Raeissi, M. Azzi, D. Li, M.A. Golozar, and J.A. Szpunar: Improving the corrosion and tribocorrosion resistance of Ni–Co nanocrystalline coatings in NaOH solution. Corros. Sci. 51 (10), 2371 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    P.B. Srinivasan, R. Zettler, C. Blawert, and W. Dietzel: Stress corrosion cracking of AZ61 magnesium alloy friction stir weldments in ASTM D1384 solution. Corros. Eng., Sci. Technol. 44, 477 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    D.A. LÓpez, S.N. Simison, and S.R. de Sànchez: The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 48 (7), 845 (2003).

    Article  Google Scholar 

  40. 40.

    M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée: The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: Structure-activity correlation. Corros. Sci. 48 (5), 1279 (2006).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project is supported by Science and Technology Research Funding Project of Guangdong Province (Grant no. 2014B090901029) and Research & Development Funding Project of Shenzhen (Grant no. JCYJ20140417115840280 and CXZZ20140702113545562).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoyi Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, H., Zhang, S. et al. Effect of electropulsing-ultrasonic surface treatment on the surface properties and the corrosion behavior of 45 steel. Journal of Materials Research 31, 2114–2124 (2016). https://doi.org/10.1557/jmr.2016.126

Download citation