Effect of liquid structural transition on the dissolution of solid copper in liquid eutectic tin–bismuth

Abstract

The tin–bismuth eutectic alloy possesses anomalous physicochemical properties that are dependent on temperature. This paper reports the interfacial reaction and growth behavior of the intermetallic compound (IMC) layer during the dissolution of solid copper in liquid eutectic tin–bismuth at 673–823 K under the influence of the structural transition of liquid eutectic tin–bismuth. The structural transition markedly affected the dissolution rate constant of solid copper and the growth rate of the IMCs. Correspondingly, the application of the liquid structural transition significantly decreased the activation energy of dissolution and increased the apparent activation energy for IMC growth. Moreover, two major roles of elemental Bi on the formation and growth of the IMCs were suggested.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    M.A.H. Howes and Z.P. Saperstein: Reaction of lead–tin solders with copper alloys. Weld. J. 48 (2), 80s (1969).

    Google Scholar 

  2. 2.

    J.N. Glosli and F.H. Ree: Liquid–liquid phase transformation in carbon. Phys. Rev. Lett. 82, 4569 (1999).

    Article  Google Scholar 

  3. 3.

    Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi: A first-order liquid–liquid phase transition in phosphorus. Nature 403, 170 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    P. McMillan: Phase transitions: Jumping between liquid states. Nature 403, 151 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    X.F. Bian and W.M. Wang: Thermal-rate treatment and structure transformation of Al–13 wt% Si alloy melt. Mater. Lett. 44, 54 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Q.D. Qin, Y.G. Zhao, Y.H. Liang, and W. Zhou: Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite. J. Alloys Compd. 399, 106 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    C.L. Xu and Q.C. Jiang: Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate. Mater. Sci. Eng., A 437, 451 (2006).

    Article  Google Scholar 

  8. 8.

    F.Q. Zu, G.H. Ding, and X.F. Li: Change in solidification behavior of Bi–Sb10 alloy after liquid structural transition. J. Cryst. Growth 310, 397 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    F.Q. Zu, J. Chen, X.F. Li, L.N. Mao, and Y.C. Liu: A new viewpoint to the mechanism for the effects of melt overheating on solidification of Pb–Bi alloys. J. Mater. Res. 24, 2378 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    X. Qi, G.H. Ding, and G.W. Zhou: Dissolution of solid copper in liquid tin enhanced by the liquid structural transition. J. Appl. Phys. 115, 244907 (2014).

    Article  Google Scholar 

  11. 11.

    L. Wang, X.F. Bian, and J.T. Liu: Discontinuous structural phase transition of liquid metal and alloys (1). Phys. Lett. A 326, 429 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    A.Q. Wu, L.J. Guo, C.S. Liu, E.G. Jia, and Z.G. Zhu: Internal friction behavior of liquid Bi–Sn alloys. Physica B 369, 51 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    X.F. Li, F.Q. Zu, H.F. Ding, J. Yu, L.J. Liu, and Y. Xi: High-temperature liquid–liquid structure transition in liquid Sn–Bi alloys: Experimental evidence by electrical resistivity method. Phys. Lett. A 354 (4), 325 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z.A. Munir: Kinetics of current-enhanced dissolution of nickel in liquid aluminum. Acta Mater. 55, 5592 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Y.W. Yen, W.T. Chou, Y. Tseng, C. Lee, and C.L. Hsu: Investigation of dissolution behavior of metallic substrates and intermetallic compound in molten lead-free solders. J. Electron. Mater. 37 (1), 73 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    W.F. Feng, C.Q. Wang, and M. Morinaga: Electronic structure mechanism for the wettability of Sn-based solder alloys. J. Electron. Mater. 31 (3), 185 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    X.W. Hu, Y.L. Li, and Z.X. Min: Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    T.Y. Kang, Y.Y. Xiu, L. Hui, J.J. Wang, W.P. Tong, and C.Z. Liu: Effect of bismuth on intermetallic compound growth in lead free solder/Cu microelectronic interconnect. J. Mater. Sci. Technol. 27 (8), 741 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    T.Y. Kang, Y.Y. Xiu, C.Z. Liu, L. Hui, J.J. Wang, and W.P. Tong: Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect. J. Alloys Compd. 509, 1785 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    H. Baker: ASM Handbook, Vol. 3: Alloy Phase Diagrams (ASM International, Metals Park, 1992).

    Google Scholar 

  21. 21.

    Y. Takaku, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: Interfacial reaction and Morphology between molten Sn base solders and Cu substrate. Mater. Trans. 45 (3), 646 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    J. Chen, F.Q. Zu, X.F. Li, G.H. Ding, H.S. Chen, and L. Zou: Influence of a liquid structural change on the solidification of the alloy CuSn30. Met. Mater. Int. 14 (5), 569 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    X.F. Li, F. Zhang, F.Q. Zu, X. Lv, Z.X. Zhao, and D.D. Yang: Effect of liquid–liquid structure transition on solidification and wettability of Sn–0.7Cu solder. J. Alloys Compd. 505, 472 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    C.H.P. Lupis: Chemical Thermodynamics of Materials (Elsevier Science Publishing Co. Inc., Amsterdam, 1983); p. 116.

    Google Scholar 

  25. 25.

    T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino: Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: A comparison to liquid Pb. Phys. Rev. B: Condens. Matter Mater. Phys. 67 (6), 064201 (2003).

    Article  Google Scholar 

  26. 26.

    C.S. Liu, G.X. Li, Y.F. Liang, and A.Q. Wu: Quantitative analysis based on the pair distribution function for understanding the anomalous liquid-structure change in In20Sn80. Phys. Rev. B: Condens. Matter Mater. Phys. 71, 064204 (2005).

    Article  Google Scholar 

  27. 27.

    O.M. Abdelhadi and L. Ladani: IMC growth of Sn–3.5Ag/Cu system: Combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 537, 87 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    S. Chada, W. Laub, R.A. Fournelle, and D. Shangguan: An improved numerical method for predicting intermetallic layer thickness developed during the formation of solder joints on Cu substrates. J. Electron. Mater. 28 (11), 1194 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    D. Ma, W.D. Wang, and S.K. Lahiri: Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow. J. Appl. Phys. 91 (5), 3312 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    K.H. Prakash, and T. Sritharan: Interface reaction between copper and molten tin–lead solders. Acta Mater. 49, 2481 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    V.I. Dybkov: Reaction Diffusion and Solid State Chemical Kinetics, 2nd ed. (Trans Tech Publications, Zurich, 2010).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the National Natural Science Foundation of China (Grant Nos 51101067 and 51301073) and the Natural Science Foundation of the Higher Education Institutions of Anhui Province (Grant No. KJ2015A098).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, GH., Qi, X., Liu, SL. et al. Effect of liquid structural transition on the dissolution of solid copper in liquid eutectic tin–bismuth. Journal of Materials Research 31, 1145–1152 (2016). https://doi.org/10.1557/jmr.2016.118

Download citation