Structural, magnetic and electrical transport properties of double perovskite Tb2MnCoO6


The double perovskite Tb2MnCoO6 and two simple perovskites TbMnO3 and TbCoO3 were synthesized by a solid sintering reaction method. The Rietveld refinement results based on the x-ray powder diffraction data identified all samples as orthorhombic perovskite structures with space group Pbnm (62). The lattice parameters of Tb2MnCoO6 were a = 5.278 (3) Å, b = 5.579 (4) Å, and c = 7.513 (4) Å with a cell volume V = 221.2 (6) Å3, Z = 2. Meta-magnetic behavior was observed near 92 K for Tb2MnCoO6, which was considered to be related to the coexistence of and competition between the ferromagnetic order and antiferromagnetic order. Temperature-dependent resistance (R–T) was also measured. Compared with TbCoO3 and TbMnO3, Tb2MnCoO6 is more conductive, with its activation energy reduced from 0.3062 eV for TbCoO3 (0.2754 eV for TbMnO3) to 0.1949 eV. The results reported here can assist in understanding the multiferroic physics mechanism of double perovskite materials.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    S. Yáñez-Vilar, E.D. Mun, V.S. Zapf, B.G. Ueland, J.S. Gardn, J.D. Thompson, J. Single, and M. Sánchez-Andújar: Multiferroic behavior in the double-perovskite Lu2MnCoO6. Phys. Rev. B 84, 134427 (2011).

    Article  Google Scholar 

  2. 2.

    M.G. Masud, A. Ghosh, J. Sannigrahi, and B.K. Chaudhuri: Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6. J. Phys.: Condens. Matter 24, 295902 (2012).

    Google Scholar 

  3. 3.

    G. Sharma, J. Saha, S.D. Kaushik, V. Siruguri, and S. Patnaik: Magnetism driven ferroelectricity above liquid nitrogen temperature in Y2CoMnO6. Appl. Phys. Lett. 103, 012903 (2013).

    Article  Google Scholar 

  4. 4.

    D.V. Efremov, J. Brink, and D.I. Khomskii: Bond-versus site-centered ordering and possible ferroelectricity in manganites. Nat. Mater. 3, 853–856 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    C. Jia, S. Onoda, N. Nagaosa, and J.H. Han: Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides. Phys. Rev. B 76, 144424 (2007).

    Article  Google Scholar 

  6. 6.

    A.B. Harris: Ferroelectricity induced by incommensurate magnetism. J. Appl. Phys. 99, 08E303 (2006).

    Article  Google Scholar 

  7. 7.

    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    N. Hur, S. Park, P.A. Sharma, J.S. Ahnl, S. Guha, and S.W. Cheong: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    K. Knízek, Z. Jirák, P. Novák, and C. Cruz: Non-collinear magnetic structures of TbCoO3 and DyCoO3. Solid State Sci. 28, 26–30 (2014).

    Article  Google Scholar 

  10. 10.

    V. Cuartero, J. Blasco, J. García, S. Lafuerza, G. Subías, J.A. Rodríguez-Velamazán, and C. Ritter: Enhancement of ferromagnetic correlations on multiferroic TbMnO3 by replacing Mn with Co. J. Phys.: Condens. Matter 24, 455601 (2012).

    CAS  Google Scholar 

  11. 11.

    V. Cuartero, J. Blasco, J. García, J.A. Rodríguez-Velamazán, and C. Ritter: Metamagnetic transition in Tb2MnCoO6. EPJ Web Conf. 40, 15002 (2013). 1–4.

    CAS  Article  Google Scholar 

  12. 12.

    L. Lutterotti, S. Matthies, H.R. Wenk, A.J. Schultz, and J. Richardson: Texture and structure analysis of deformed limestone from neutron diffraction spectra. J. Appl. Phys. 81, 594–600 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    M. Sivakumar, A. Gedanken, D. Bhattacharya, I. Brukental, Y. Yeshurun, W. Zhong, Y.W. Du, I. Felner, and I. Nowik: Sonochemical synthesis of nanocrystalline rare earth orthoferrites using Fe(CO)5 precursor. Chem. Mater. 16, 3623–3632 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    S.M. El-Sheikh and M.M. Rashad: Effect of Sm3+ and Sr2+ dopants on the FT-IR, photoluminescence and surface texture of lanthanum chromite nanoparticles. J. Alloys Compd. 496, 723–732 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    J.T. Han, Y.H. Huang, W. Huang, and J.B. Goodenough: Selective synthesis of TbMn2O5 nanorods and TbMnO3 micron crystals. J. Am. Chem. Soc. 128, 14454–14455 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    B.X. Li, Y. Xie, C.Z. Wu, Z.Q. Li, and J. Zhang: Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Mater. Chem. Phys. 99, 479–486 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Y.C. Chen, Y.G. Zhang, and S.Q. Fu: Synthesis and characterization of Co3O4 hollow spheres. Mater. Lett. 61, 701–705 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    M. Sikora, C. Kapusta, K. Knízek, J. Jirák, C. Autret, M. Borowiec, C.J. Oates, V. Procházka, D. Rybicki, and D. Zajac: X-ray absorption near-edge spectroscopy study of Mn and Co valence states in LaMn1− xCoxO3 (x = 0–1). Phys. Rev. B 73, 094426 (2006).

    Article  Google Scholar 

  19. 19.

    H. Ikeda and T. Matsubara: Heat capacity of potential regenerator ABO3 materials at low temperature. Cryogenics 49, 291–293 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    M. Pekala, V. Drozd, J.F. Fagnard, P. Vanderbemden, and M. Ausloos: Magneto transport characterization of the Sn-doped TbMnO3 manganites. J. Alloys Compd. 467, 35–40 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    N. Aliouane, K. Schmalzl, D. Senff, A. Maljuk, K. Prokes, M. Braden, and D.N. Argyriou: Flop of electric polarization driven by the flop of the Mn spin cycloid in multiferroic TbMnO3. Phys. Rev. Lett. 102, 207205 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    V. Cuartero, J. Blasco, J.A. Rodríguez-Velamazán, J. García, G. Subías, and C. Ritter: Transitions induced by a magnetic field in slightly doped TbMnO3. Solid State Sci. 21, 37–43 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    F. Rivadulla, M.A. Lopez-Quintela, L.E. Hueso, P. Sande, J. Rivas, and R.D. Sanchez: Effect of Mn-site doping ion the magnetotransport properties of the colossal magnetoresistance compound La0.67Ca0.33Mn1− xAxO3 (A = Co, Cr, x ≤ 0.1). Phys. Rev. B 62, 5678–5684 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    C.M. Srivastava, S. Banerjee, T.K. GunduRao, A.K. Nigam, and D. Bahaadur: Evidence of spin transition and charge order in cobalt substituted La0.67Ca0.33MnO3. J. Phys.: Condens. Matter 15, 2375–2389 (2003).

    CAS  Google Scholar 

  25. 25.

    R.L. Zhang, W.H. Song, Y.H. Ma, J. Yang, B.C. Zhao, J.M. Dai, and Y.P. Sun: Influence of Co doping on the charge-ordering state of the bilayered Manganites LaSr2Mn2O7. Phys. Rev. B 70, 224418 (2004).

    Article  Google Scholar 

  26. 26.

    T.S. Chan, R.S. Liu, C.C. Yang, W.H. Li, Y.H. Lien, C.Y. Huang, and J.F. Lee: Chemical size effect on the magnetic and electrical properties in the (Tb1− xEux)MnO3 (0 ≤ x ≤ 1.0) system. J. Phys. Chem. B 111, 2262–2267 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    A. Prasatkhetragarn, S. Kaowphong, and R. Yimnirun: Synthesis, structural and electrical properties of double perovskite Sr2NiMoO6 ceramics. Appl. Phys. A 107, 117–121 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    M. Li, H.M. Yuan, W. Xu, M. Han, L.R. Yao, M. Yang, and S.H. Feng: Hydrothermal synthesis and dielectric characterization of a double perovskite Ba2FeSbO6. Chem. Res. Chin. Univ. 28, 788–791 (2012).

    CAS  Google Scholar 

  29. 29.

    D.K. Mahato and T.P. Sinha: Electrical impedance and electric modulus approach of double perovskite Pr2ZnZrO6 ceramics. J. Mater. Sci.: Mater. Electron. 24, 4399–4405 (2013).

    CAS  Google Scholar 

  30. 30.

    F. Orlandi, L. Righi, R. Cabassi, D. Delmonte, C. Pernechele, F. Bolzoni, F. Mezzadri, M. Solzi, M. Merlini, and G. Calestani: Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system. Inorg. Chem. 53, 10283–10290 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    M.B. Salamon: The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583–628 (2001).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant Nos. 51202218, 61274017, 61274009, 21274132, and 51572241), Science and Technology Department of Zhejiang Province Foundation (Grant No. 2014C37073), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (Grant No. IRT13097) and the Department of Education of Zhejiang Province Foundation (Grant No. Y201432023).

Author information



Corresponding authors

Correspondence to P. G. Li or W. H. Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S.L., Xu, H., Wu, X.P. et al. Structural, magnetic and electrical transport properties of double perovskite Tb2MnCoO6. Journal of Materials Research 31, 1038–1045 (2016).

Download citation