Band structure and transport studies of half Heusler compound DyPdBi: An efficient thermoelectric material

Abstract

The discovery of Heusler alloys has revolutionized the research field of intermetallics due to the ease with which one can derive potential candidates for multifunctional applications. During recent years, many half Heusler alloys have been investigated for their thermoelectric properties. The f-electron-based rare-earth ternary half Heusler compound DyPdBi has its f energy levels located close to the Fermi energy level. Other research efforts have emphasized that such materials have good thermoelectric capabilities. We have explored using first principles the electronic band structure of DyPdBi by use of different exchange correlation potentials in the density functional theoretical framework. Transport coefficients that arise in the study of thermoelectric properties of DyPdBi have been calculated and have illustrated its potential as an efficient thermoelectric material. Both the theoretically estimated Seebeck coefficient and the power factor agree well with the available experimental results. Our calculations illustrate that it is essential to include spin-orbit coupling in these models of f-electron half Heusler materials.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    M. Rajagopalan and M. Sundareswari: Ab initio study of the electronic structure of rhodium based intermetallic compounds under pressure. J. Alloys Compd. 379, 8–15 (2004). doi: https://doi.org/10.1016/j.jallcom.2004.02.011.

    CAS  Article  Google Scholar 

  2. 2.

    Fr. Heusler: Über die Synthese ferromagnetischer Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219–223 (1903).

    CAS  Google Scholar 

  3. 3.

    J. Kübler, A.R. Williams, and C.B. Sommers: Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28, 1745–1755 (1983).

    Article  Google Scholar 

  4. 4.

    M.P. Raphael, B. Ravel, Q. Huang, M.A. Willard, S.F. Cheng, B.N. Das, R.M. Stroud, K.M. Bussmann, J.H. Claassen, and V.G. Harris: Presence of antisite disorder and its characterization in the predicted half-metal Co2MnSi. Phys. Rev. B 66, 104429 (2002).

    Article  CAS  Google Scholar 

  5. 5.

    S.F. Cheng, B. Nadgorny, K. Bussmann, E.E. Carpenter, B.N. Das, G. Trotter, M.P. Raphael, and V.G. Harris: Growth and magnetic properties of single crystal Co2MnX (X = Si,Ge) Heusler alloys. IEEE Trans. Magn. 37, 2176–2178 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H-J. Lin, and J. Morais: Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72, 184434 (2005).

    Article  CAS  Google Scholar 

  7. 7.

    I. Galanakis, Ph. Mavropoulos, and P.H. Dederichs: Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D: Appl. Phys. 39, 765–775 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, and G.E. Ruden-ski: The electronic structure and magnetic properties of full and half-Heusler alloys. Mater. Trans. 47, 599–606 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    B.R.K. Nanda and I. Dasgupta: Electronic structure and magnetism in half-Heusler compounds. J. Phys.: Condens. Matter 15, 7307–7323 (2003). doi: https://doi.org/10.1088/0953-8984/15/43/014.

    CAS  Google Scholar 

  10. 10.

    B.R.K. Nanda and I. Dasgupta: Electronic structure and magnetism in doped semiconducting half-Heusler compounds. J. Phys.: Condens. Matter 17, 5037–5048 (2005). doi: https://doi.org/10.1088/0953-8984/17/33/008.

    CAS  Google Scholar 

  11. 11.

    H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka: Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 47, 1453–1457 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    P. Larson, S.D. Mahanti, S. Sportouch, and M.G. Kanatzidis: Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials. Phys. Rev. B 59, 660–668 (1999).

    Article  Google Scholar 

  13. 13.

    C.B.R. Jesus, P.F.S. Rosa, T.M. Garitezi, G.G. Lesseux, R.R. Urbano, C. Reittori, and P.G. Pagliuso: Electron spin resonance of the half-Heusler antiferromagnetic GdPdBi. Solid State Commun. 177, 95–97 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    R.A. Downie, D.A. MacLaren, and J-W.G. Bos: Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys. J. Mater. Chem. A 2, 6107–6114 (2014). doi: https://doi.org/10.1039/c3ta13955g.

    CAS  Article  Google Scholar 

  15. 15.

    K. Gofryk, D. Kaczorowski, T. Plackowski, A. Leithe-Jasper, and Yu. Grin: Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: Prospective systems for topological quantum phenomena. Phys. Rev. B 84, 035208 (2011). doi: https://doi.org/10.1103/Phys-RevB.84.035208. ArXiv: 1106.3763.

    Article  CAS  Google Scholar 

  16. 16.

    Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, R. Wang, S.R. Saha, D. Pratt, J.W. Lynn, and J. Paglione: Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 1, e1500242 (2015). doi: https://doi.org/10.1126/sciadv.1500242. ArXiv: 1501.04096.

    Article  CAS  Google Scholar 

  17. 17.

    W. Al-Sawai, H. Lin, R.S. Markiewiez, L.A. Wray, Y. Xia, S-Y. Xu, Z. Hasan, and A. Bansil: Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B 82, 125208 (2010).

    Article  CAS  Google Scholar 

  18. 18.

    S.K. Bose, J. Kudrnovsky, V. Drchal, and I. Turek: Pressure dependence of Curie temperature and resistivity in complex Heusler alloys. Phys. Rev. B 84, 174422 (2011). doi: https://doi.org/10.1103/PhysRevB.84.174422. ArXiv: 1010.3025.

    Article  CAS  Google Scholar 

  19. 19.

    Y. Pan, A.M. Nikitin, T.V. Bay, Y.K. Huang, C. Paulsen, B.H. Yan, and A. de Visser: Superconductivity and magnetic order in the non-centrosymmetric half-Heusler compound ErPdBi. Europhys. Lett. 104, 27001 (2013).

    Article  CAS  Google Scholar 

  20. 20.

    I. Galanakis, P.H. Dederichs, and N. Papanikolaou: Origin and properties of the gap in the half-ferrormagetic Heusler alloys. Phys. Rev. B 66, 134428 (2002).

    Article  CAS  Google Scholar 

  21. 21.

    M. Gillessen: Massgeschneidertes und Analytik-Ersatz über die quantenchemischen Untersuchungen einiger ternärer intermet-allisher Verbindungen, Dissertation, Aachen, 2009. Available at http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3122/pdf/Gillessens_Michael.pdf.

  22. 22.

    M. Gillessen and R. Dronskowski: A Combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 30, 1290–1299 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    M. Gillessen and R. Dronskowski: A Combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 31, 612–619 (2010).

    CAS  Google Scholar 

  24. 24.

    S. Krishnaveni, M. Sundareswari, and M. Rajagopalan: Prediction of electronic and magnetic properties of full Heusler alloy Ir2CrAl. IOSR J. Appl. Phys. 7, 52–55 (2015). doi: https://doi.org/10.9790/4861-07135255.

    Google Scholar 

  25. 25.

    L. Müchler, F. Casper, B. Yan, S. Chadov, and C. Felser: Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 7, 91–100 (2013). doi: https://doi.org/10.1002/pssr.201206411.

    Article  CAS  Google Scholar 

  26. 26.

    G.D. Mahan and J.O. Sofo: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 7436–7439 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    G.K.H. Madsen and D.J. Singh: BoltzTraP: A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). doi: https://doi.org/10.1016/j.cpc.2006.03.007. ArXiv: cond-mat/0602203.

    CAS  Article  Google Scholar 

  28. 28.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke: Restoring the Desity-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Let. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  29. 29.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz: WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Wien, 2001). ISBN 3-9501031-1-2. Freely available at http://www.wien2k.at/reg_user/textbooks/usersguide.pdf.

    Google Scholar 

  30. 30.

    S. Cottenier: Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction, 2002–2013, 2nd ed. (KU Leuven, Belgium, 2015). ISBN 978-90-807215-1-7. Freely available at http://www.wien2k.at/reguser/textbooks.

    Google Scholar 

  31. 31.

    J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang: Evaluation of half-Heusler compounds as thermoelectric materials based on the calcu-lated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008). doi: https://doi.org/10.1002/adfm.200701369.

    CAS  Article  Google Scholar 

  32. 32.

    S.M. Saini, N. Singh, T. Nautiyal, and S. Auluck: Reflectance and magneto-optical Kerr rotation in DyP. Indian J. Pure Appl. Phys. 45, 66–68 (2007).

    CAS  Google Scholar 

  33. 33.

    V.I. Anisimov, J. Zaanen, and O.K. Andersen: Band theory and Mott insulators: Hubbard U instead of Stoner I.J. Phys. Rev. B 67, 943–954 (1991).

    Article  Google Scholar 

  34. 34.

    S.M. Saini, N. Singh, T. Nautiyal, and S. Auluck: Optical properties of heavy rare earth metals (Gd-Lu). Solid State Commun. 140, 125–129 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    S.M. Saini, N. Singh, T. Nautiyal, and S. Auluck: Optical and magneto-optical properties of gadolinium. J. Appl. Phys. 101, 033523 (2007).

    Article  CAS  Google Scholar 

  36. 36.

    S.M. Saini, N. Singh, T. Nautiyal, and S. Auluck: Comparative study of optical and magneto-optical properties of GdFe2 and GdCo2. J. Phys.: Condens. Matter 19, 176203 (2007). doi: https://doi.org/10.1088/0953-8984/19/17/176203.

    Google Scholar 

  37. 37.

    N. Singh, S.M. Saini, T. Nautiyal, and S. Auluck: Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr, and Nd). J. Appl. Phys. 100, 083525 (2006). doi: https://doi.org/10.1063/1.2353267.

    Article  CAS  Google Scholar 

  38. 38.

    N. Singh, S.M. Saini, T. Nautiyal, and S. Auluck: Theoretical investigation of the optical and magneto-optical properties of EuX (X = S, Se, and Te). Phys. B 388, 99106 (2007).

    Article  CAS  Google Scholar 

  39. 39.

    N. Singh, S.M. Saini, T. Nautiyal, and S. Auluck: Electronic structure and optical properties of rare earth hexaborides RB6 (R = La, Ce, Pr, Nd, Sm, Eu, Gd). J. Phys.: Condens. Matter 19, 346226 (2007). doi: https://doi.org/10.1088/0953-8984/19/34/346226.

    Google Scholar 

  40. 40.

    S.M. Saini, T. Nautiyal, and S. Auluck: Electronic and optical properties of rare earth trifluorides RF3 (R = La, Ce, Pr, Nd, Gd and Dy). Mater. Chem. Phys. 129, 349–355 (2011). doi: https://doi.org/10.1016/j.matchemphys.2011.04.024.

    CAS  Article  Google Scholar 

  41. 41.

    B. Rameshe, M. Rajagopalan, and B. Palanivel: Electronic structure, structural phase stability, optical and thermoelectric properties of Sr2AlM0O6 (M0 = Nb and Ta) from first principles calculations. Comput. Condens. Matter 4, 13–22 (2015). doi: https://doi.org/10.1016/j.cocom.2015.03.003.

    Article  Google Scholar 

  42. 42.

    D.J. Singh: Doping dependent thermopower of PdTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010). doi: https://doi.org/10.1103/PhysRevB.81.195217.

    Article  CAS  Google Scholar 

  43. 43.

    Y. Nishino: Development of thermoelectric materials based on Fe2VAl Heusler compound for energy harvesting applications. Inst. Phys. Conf. Ser.: Mater. Sci. Eng. 18, 142001 (2011). doi: https://doi.org/10.1088/1757-899X/18/14/142001.

    Google Scholar 

  44. 44.

    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antinomy telluride bulk alloys. Science 320, 634–638 (2008). doi: https://doi.org/10.1126/science.1156446.

    CAS  Article  Google Scholar 

  45. 45.

    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053. doi: https://doi.org/10.1002/adma.200600527.

  46. 46.

    L.D. Hicks and M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

MS thanks Prof. Dr. M. Rajagopalan of the Anna University for his constant support and encouragement, and Prof. Sushil Auluck, NPL, New Delhi for his valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Krishnaveni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishnaveni, S., Sundareswari, M., Deshmukh, P.C. et al. Band structure and transport studies of half Heusler compound DyPdBi: An efficient thermoelectric material. Journal of Materials Research 31, 1306–1315 (2016). https://doi.org/10.1557/jmr.2016.105

Download citation