Optical properties of Si nanowires: Dependence on substrate crystallographic orientation and light polarization

Abstract

Optical properties of Si nanowire (SiNW) arrays prepared on p-doped Si(111) and Si(100) substrates were studied. SiNWs were synthesized by self-assembly electroless metal deposition nanoelectrochemistry in an ionic silver HF solution through selective etching. Total reflectance (Rt) and total diffuse reflectance (Rdt) of SiNWs change drastically in comparison to polished Si. To understand these changes, diffuse reflectance (Rd) with polarized incident light was studied. For samples prepared on Si(111), the wave length integrated Rd (wIRd) shows maxima at certain angles of incidence θ, regardless of the incident light polarization. For samples prepared on Si(100), wIRd increases with θ and depends on incident light polarization. Also, Rd spectra show structures due to interference effects. Therefore, SiNWs prepared on Si(100) can be considered as thin films whose refractive index depends on light polarization. Moreover, Rdt of SiNWs prepared on Si(111) can be modeled as an ensemble of diffuse reflectors.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    K. Peng, X. Wang, and S.T. Lee: Silicon nanowire array photoelectrochemical solar cells. Appl. Phys. Lett. 92, 163103 (2008).

    Article  Google Scholar 

  2. 2.

    A. Convertino, M. Cuscuna, and F. Martelli: Optical reflectivity from highly disordered Si nanowire films. Nanotechnology 21, 355701 (2010).

    Article  Google Scholar 

  3. 3.

    W.Q. Xie, J.I. Oh, and W.Z. Shen: Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays. Nanotechnology 22, 065704 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    R.A. Street, W.S. Wong, and C. Paulson: Analytic model for diffuse reflectivity of silicon nanowire mats. Nano Lett. 9, 3494 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    X.X. Lin, X. Hua, Z.G. Huang, and W.Z. Shen: Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology 24, 235402 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Jiang, R. Qin, M. Li, G. Wang, H. Ma, and F. Chang: Effect of alkali treatment on the spectral response of silicon-nanowire solar cells. Mater. Sci. Semicond. Process. 17, 81 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    J.M. Spurgeon, H.A. Atwater, and N.S. Lewis: A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes. J. Phys. Chem. C 112, 6186 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    B.M. Kayes, H.A. Atwater, and N.S. Lewis: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  9. 9.

    R. Tena-Zaera, M.A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clemént: Fabrication and characterization of ZnO nanowires/CdSe/CuSCNeta-solar cell. C. R. Chim. 9, 717 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    J.B. Baxter and E.S. Aydil: Nanowire based dye sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).

    Article  Google Scholar 

  11. 11.

    R.S. Wagner and W.C. Ellis: Vapor liquid solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    CAS  Article  Google Scholar 

  12. 12.

    A.M. Morales and C.M. Lieber: A laser ablation method for synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, and S.T. Lee: Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72, 1835 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, and T.Y. Tan: Silicon nanowhiskers grown on {111} Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 84, 4968 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    R. Juhasz, K. Kylmänen, A. Galeckas, and J. Linnros: Size-reduced silicon nanowires: Fabrication and electrical characterization. Mater. Sci. Eng., C 25, 733 (2005).

    Article  Google Scholar 

  16. 16.

    Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen: Silicon nanowire-based solar cells. Nanotechnology 19, 295203 (2008).

    Article  Google Scholar 

  17. 17.

    M. Lu, M.K. Li, L.B. Kong, X.Y. Guo, and H.L. Li: Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties. Chem. Phys. Lett. 374, 542 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    K-Q. Peng, Y-J. Yan, S-P. Gao, and J. Zhu: Synthesis of large area silicon nanowire arrays via self assembly nanoelectrochemistry. Adv. Mater. 14, 1164 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    T. Qiu, X.L. Wu, Y.F. Mei, G.J. Wan, P.K. Chu, and G.G. Siu: From Si nanotubes to nanowires: Synthesis, characterization, and self-assembly. J. Cryst. Growth 227, 143 (2005).

    Article  Google Scholar 

  20. 20.

    E.A. Dalchiele, F. Martín, D. Leinen, R.E. Marotti, and J.R. Ramos-Barrado: Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays. Thin Solid Films 518, 1804 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    E.A. Dalchiele, F. Martín, D. Leinen, R.E. Marotti, and J.R. Ramos-Barrado: Single-crystalline silicon nanowire array-based photoelectrochemical cells. J. Electrochem. Soc. 156, K77 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    S-L. Wu, T. Zhang, R-T. Zheng, and G-A. Cheng: Facile morphological control of single-crystalline silicon nanowires. Appl. Surf. Sci. 258, 9792 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    H.M. Branz, V.E. Yost, S. Ward, K.M. Jones, B. To, and P. Stradins: Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl. Phys. Lett. 94, 231121 (2009).

    Article  Google Scholar 

  24. 24.

    J. Oh, H-C. Yuan, and H.M. Branz: An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7, 743 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    B.C.P. Sturmberg, K.B. Dossou, L.C. Botten, A.A. Asatryan, C.G. Paulton, C.M. de Sterke, and R.C. McPhedran: Modal analysis of enhanced absorption in silicon nanowire arrays. Opt. Express 19, A1067 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    H. Bao and X. Ruan: Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt. Lett. 35, 3378 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    N. Lagos, M.M. Sigalas, and D. Niarchos: The optical absorption of nanowire arrays. Phot. Nano. Fund. Appl. 9, 163 (2011).

    Article  Google Scholar 

  28. 28.

    T. Yamaguchi, T. Shimizu, Y. Morosawa, K. Takase, T. Chen, S. Lu, H. Chien, and S. Shingubara. Morphology dependence of optical reflectance properties for a high density array of silicon nanowires. Jpn. J. Appl. Phys. 53, 06JF10 (2014).

    Article  Google Scholar 

  29. 29.

    H. Li, W. Wang, L. Zhao, C. Zhou, and H. Diao: A new attempt at alkaline texturization of monocrystaline silicon with anionic surfactant as the additive. Jpn. J. Appl. Phys. 51, 10NA18 (2012).

    Article  Google Scholar 

  30. 30.

    L. Sun and J. Tang: A new texturing of monocrystalline silicon surface with sodium hypochlorite. Appl. Surf. Sci. 255, 9301 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    M. Nelkomsky and R. Braunstein: Interband transitions and exciton effects in semiconductors. Phys. Rev. B 5, 497 (1972).

    Article  Google Scholar 

  32. 32.

    R.A. Forman, W.R. Thurber, and D.E. Aspnes: Second indirect band gap in silicon. Solid State Commun. 14, 1007 (1974).

    CAS  Article  Google Scholar 

  33. 33.

    M.A. Green and M. Keevers: Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 3, 189 (2007).

    Article  Google Scholar 

  34. 34.

    M.P. Silverman: Waves and Grains (Princeton University Press, Princeton, NJ, 1998).

    Google Scholar 

  35. 35.

    C.J. Oton, Z. Gaburro, M. Ghulinyan, L. Pancheri, P. Bettotti, L. Dal Negro, and L. Pavesi: Scattering rings in optically anisotropic porous silicon. Appl. Phys. Lett. 81, 4919 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    J. Gómez Rivas, O.L. Muskens, M.T. Borgström, S.L. Diedenhofen, and E.P.A.M. Bakkers: Optical anisotropy of semiconductor nanowires. In One-Dimensional Nanostructures, Lecture Notes in Nanoscale Science and Technology, Vol. 3, Z.M. Wang ed. (Springer, New York, NY, 2008); p. 137.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Comisión Sectorial de Investigación Científica (CSIC) of the Universidad de la República; Agencia Nacional de Investigación e Innovación (ANII); PEDECIBA — Física, in Uruguay. Junta de Andalucía, Project P07-FQM-02573 in Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan A. Badán.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badán, J.A., Marotti, R.E., Dalchiele, E.A. et al. Optical properties of Si nanowires: Dependence on substrate crystallographic orientation and light polarization. Journal of Materials Research 30, 753–760 (2015). https://doi.org/10.1557/jmr.2015.47

Download citation