Tensile, fatigue, and corrosion fatigue behavior of high performance die cast aluminum alloy

Abstract

High performance die castings are urgently expected to be used as structural components subjected to dynamic loading. Therefore, tensile properties, fatigue, and corrosion-fatigue behavior of automotive die cast AlMg5Si2Mn alloy are studied in the current work. The results indicate that the tensile strength and yield strength of the as-cast specimens are obviously lower than those of the age-treated specimens, while the elongation decreases with increasing aging time. Neutral corrosive environment (3.5% NaCl solution) dramatically decreases the fatigue limits from 75 to 50 MPa. Fatigue lives of the directly corroded and precorroded specimens are close to each other. The values of material constants m and C are in the range of 5.756–5.874 and 2.421 × 10−10 to 4.285 × 10−9, respectively. Obscure fatigue striations and featureless facets are observed in crack propagation regions. Anodic dissolution is dominantly responsible for the premature crack initiation and stress corrosion cracking leading to the formation of fractured α-Al matrix.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    D. Brungs: Light weight design with light metal castings. Mater. Des. 18 (4–6), 285 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    G.S. Cole and A.M. Sherman: Light weight materials for automotive applications. Mater. Charact. 35 (1), 3 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    H. Kaufmann and P.J. Uggowitzer: Fundamentals of the new rheocasting process for magnesium alloys. Adv. Eng. Mater. 3 (12), 963 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    H. Kaufmann and P.J. Uggowitzer: Metallurgy and Processing of High-Integrity Light Metal Pressure Castings (Schiele & Schön, Germany, 2007).

    Google Scholar 

  5. 5.

    Z. Hu, L. Wan, S. Wu, H. Wu, and X. Liu: Microstructure and mechanical properties of high strength die-casting Al–Mg–Si–Mn alloy. Mater. Des. 46, 451 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    S. Ji, D. Watson, Z. Fan, and M. White: Development of a super ductile diecast Al–Mg–Si alloy. Mater. Sci. Eng., A 556, 824 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S. Otarawanna, C.M. Gourlay, H.I. Laukli, and A.K. Dahle: The thickness of defect bands in high-pressure die castings. Mater. Charact. 12 (60), 1432 (2009).

    Article  Google Scholar 

  8. 8.

    S. Otarawanna, C.M. Gourlay, H.I. Laukli, and A.K. Dahle: Formation of the surface layer in hypoeutectic Al-alloy high-pressure die castings. Mater. Chem. Phys. 130 (1–2), 254 (2011).

    Google Scholar 

  9. 9.

    L. Wan, Z. Hu, S. Wu, and X. Liu: Mechanical properties and fatigue behavior of vacuum-assist die cast AlMgSiMn alloy. Mater. Sci. Eng., A 576, 252 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Z. Hu, L. Wan, S. Lü, P. Zhu, and S. Wu: Research on the microstructure, fatigue and corrosion behavior of permanent mold and die cast aluminum alloy. Mater. Des. 55, 353 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    R.M. Chlistovsky, P.J. Heffernan, and D.L. DuQuesnay: Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads. Int. J. Fatigue 29 (9–11), 1941 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    U. Zupanc and J. Grum: Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651. J. Mater. Process. Technol. 210 (9), 1197 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    K. Jones and D.W. Hoeppner: Prior corrosion and fatigue of 2024-T3 aluminum alloy. Corros. Sci. 48 (10), 3109 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    P. Paris and F. Erdogan: A critical analysis of crack propagation laws. J. Basic Eng. 4 (85), 528 (1963).

    Article  Google Scholar 

  15. 15.

    S. Suresh: Fatigue of Materials (Cambridge University Press, England, 1991); pp. 95.

    Google Scholar 

  16. 16.

    D.A. Lados, D. Apelian, P.E. Jones, and J.F. Major: Microstructural mechanisms controlling fatigue crack growth in Al–Si–Mg cast alloys. Mater. Sci. Eng., A 468–470, 237 (2007).

    Article  Google Scholar 

  17. 17.

    P. Venkateswaran, S. Ganesh Sundara Raman, S.D. Pathak, Y. Miyashita, and Y. Mutoh: Fatigue crack growth behaviour of a die-cast magnesium alloy AZ91D. Mater. Lett. 58 (20), 2525 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    W. Elber: Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2 (1), 37 (1970).

    Article  Google Scholar 

  19. 19.

    J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley: Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy (A356–T6). Mater. Sci. Eng., A 386 (1–2), 396 (2004).

    Article  Google Scholar 

  20. 20.

    C-K. Lin and S-T. Yang: Corrosion fatigue behavior of 7050 aluminum alloys in different tempers. Eng. Fract. Mech. 59 (6), 779 (1998).

    Article  Google Scholar 

  21. 21.

    C. Menzemer and T.S. Srivatsan: The effect of environment on fatigue crack growth behavior of aluminum alloy 5456. Mater. Sci. Eng., A 271 (1–2), 188 (1999).

    Article  Google Scholar 

  22. 22.

    A. Hartman: On the effect of oxygen and water vapor on the propagation of fatigue cracks in 2024-T3 alclad sheet. Int. J. Fract. Mech. 1 (3), 167 (1965).

    CAS  Article  Google Scholar 

  23. 23.

    D.A. Meyn: Fractographic diagnosis of stress corrosion cracking in Al-Zn-Mg alloys. Corrosion 26 (10), 427 (1970).

    CAS  Article  Google Scholar 

  24. 24.

    C. Vargel: Corrosion of Aluminium (Elsevier Science, England, 2004); pp. 67.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by Project 2012A090300016 supported by Guangdong Provincial Department of Science and Technology, China. Authors would like to express thanks to Material Institution of CAEP (China Academy of Engineering Physics). The authors would also like to express their appreciation to the Analytical and Testing Center, Huazhong University of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zuqi Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wu, S. Tensile, fatigue, and corrosion fatigue behavior of high performance die cast aluminum alloy. Journal of Materials Research 30, 833–840 (2015). https://doi.org/10.1557/jmr.2015.45

Download citation