N-doped polymer-derived Si(N)OC: The role of the N-containing precursor

Abstract

Polymer precursors for Si(N)OC ceramics have been synthesized by hydrosilylation reaction of polyhydridomethylsiloxane (PHMS) with three different nitrogen containing compounds. The results obtained by combining characterization techniques such as FTIR, 13C- and 29Si-NMR confirm the occurrence of the cross-linking reaction between Si–H and vinyl groups. The structural characterization of the corresponding ceramic phase shows that the type of N-containing compounds strongly influences the pyrolytic transformation as well as the crystallization behavior of the final ceramics. Elemental analysis clearly indicates that N is present in the Si(N)OC matrix and the degree of N retention after pyrolysis is related to the type of N-containing starting compound. XPS data show that N–C bonds are present in the Si(N)OC ceramic samples even if only N–Si bonds are present in the starting N-containing precursors. However, if nitrogen atoms form bonds with sp2 carbon atoms in the preceramic polymer then a larger fraction of C–N bonds is retained in the final Si(N)OC ceramic.

This is a preview of subscription content, access via your institution.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    H. Bréquel, J. Parmentier, S. Walter, R. Badheka, G. Trimmel, S. Masse, J. Latournerie, P. Dempsey, C. Turquat, A. Desmartin-Chomel, L. Le Neindre-Prum, U.A. Jayasooriya, D. Hourlier, H-J. Kleebe, G.D. Sorarù, S. Enzo, and F. Babonneau: Systematic structural characterisation of the high temperature behaviour of nearly-stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 2585–2598 (2004).

    Article  CAS  Google Scholar 

  2. 2.

    P. Colombo, G. Mera, R. Riedel, and G.D. Soraru: Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93 (7), 1–32 (2010).

    Google Scholar 

  3. 3.

    A. Saha, R. Raj, and D.L. Williamson: A model for the nanodomains in polymer-derived SiCO. J. Am. Ceram. Soc. 89, 2188–2195 (2006).

    CAS  Google Scholar 

  4. 4.

    S.J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel, and A. Navrotsky: 29Si and 13C solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem. Mater. 22, 6221–6228 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    N. Suyal, T. Krajewski, and M. Mennig: Sol-gel synthesis and microstructural characterization of silicon oxycarbide glass sheets with high fracture strength and high modulus. J. Sol-Gel Sci. Technol. 13, 995–999 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    V.L. Nguyen, V. Proust, C. Quievryn, S. Bernard, P. Miele, and G.D. Soraru: Processing, mechanical characterization, and alkali resistance of siliconboronoxycarbide (SiBOC) glass fibers. J. Am. Ceram. Soc. 97, 3143–3149 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    G.D. Soraru, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C.G. Pantano: Chemical durability of silicon oxycarbide glasses. J. Am. Ceram. Soc. 85, 1529–1536 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    M. Narisawa, T. Kawai, S. Watase, K. Matsukawa, T. Dohmaru, K. Okamura, and A. Iwase: Long-lived photoluminescence in amorphous Si-O-C(-H) ceramics derived from polysiloxanes. J. Am. Ceram. Soc. 95, 3935–3940 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    P.E. Sanchez-Jimenez and R. Raj: Lithium insertion in polymer-derived silicon oxycarbide ceramics. J. Am. Ceram. Soc. 93, 1127–1135 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    V.L. Nguyen, C. Zanella, P. Bettotti, and G.D. Soraru: Electrical conductivity of SiOCN ceramics by the powder-solution-composite technique. J. Am. Ceram. Soc. 97, 2525–2530 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    A. Karakuscu, R. Guider, L. Pavesi, and G.D. Soraru: White luminescence from sol–gel-derived SiOC thin films. J. Am. Ceram. Soc. 92, 2969–2974 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    H. Fukui, H. Ohsuka, T. Hino, and K. Kanamura: Silicon oxycarbides in hard-carbon microstructures and their electrochemical lithium storage. J. Electrochem. Soc. 160, 1276–1281 (2013).

    Article  CAS  Google Scholar 

  13. 13.

    V.S. Pradeep, M. Graczyk-Zajac, M. Wilamowska, R. Riedel, and G.D. Soraru: Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics 262, 22–24 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    R. Riedel, L. Toma, E. Janssen, J. Nuffer, T. Melz, and H. Hanselka: Piezoresistive effect in SiOC ceramics for integrated pressure sensors. J. Am. Ceram. Soc. 93, 920–924 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    C. Turquat, H-J. Kleebe, G. Gregori, S. Walter, and G.D. Soraru: Transmission electron microscopy and electron energy-loss spectroscopy study of nonstoichiometric silicon-carbon-oxygen glasses. J. Am. Ceram. Soc. 96, 2189–2196 (2001).

    Google Scholar 

  16. 16.

    J. Cordelair and P. Greil: Electrical conductivity measurements as a microprobe for structure transitions in polysiloxane derived Si-O-C ceramics. J. Eur. Ceram. Soc. 20, 1947–1957 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    K. Wang, B. Ma, Y. Wang, and L. An: Complex impedance spectra of polymer-derived silicon oxycarbides. J. Am. Ceram. Soc. 96, 1363–1365 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    I. Menapace, G. Mera, R. Riedel, E. Erdem, R.A. Eichel, A. Pauletti, and G.A. Appleby: Luminescence of heat-treated silicon-based polymers: Promising materials for LED applications. J. Mater. Sci. 43, 5790–5796 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    V.S. Pradeep, M. Graczyk-Zajac, R. Riedel, and G.D. Soraru: New insights in to the lithium storage mechanism in polymer derived SiOC anode materials. Electrochim. Acta 119, 78–85 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    P. Kroll: Modeling the “free carbon” phase in amorphous silicon oxycarbide. J. Non-Cryst. Solids 351, 1121–1126 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    G.D. Sorarù, F. Babonneau, S. Maurina, and J. Vicens: Sol-gel synthesis of SiBOC glasses. J. Non-Cryst. Solids 224, 173–183 (1998).

    Article  Google Scholar 

  22. 22.

    M.A. Schiavon, K.J. Ciuffi, and I.V.P. Yoshida: Glasses in the Si-O-C-N system produced by pyrolysis of polycyclic silazane/siloxane networks. J. Non-Cryst. Solids 353, 2280–2288 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    C. Gervais, F. Babonneau, N. Dallabona, and G.D. Soraru: Sol-gel-derived silicon-boron oxycarbide glasses containing mixed silicon oxycarbide (SiCxO4-x) and boron oxycarbide (BCyO3-y) units. J. Am. Ceram. Soc. 84, 2160–2164 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    R. Pena-Alonso, G. Mariotto, C. Gervais, F. Babonneau, and G.D. Soraru: New insights on the high temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses. Chem. Mater. 19, 5694–5702 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    A. Karakuscu, R. Guider, L. Pavesi, and G.D. Sorarù: Broad-band tunable visible emission of sol–gel derived SiBOC ceramic thin films. Thin Solid Films 519, 3822–3826 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    A. Klonczynski, G. Schneider, R. Riedel, and R. Theissmann: Influence of boron on the microstructure of polymer derived SiCO ceramics. Adv. Eng. Mater. 6, 64–68 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    A.H. Tavakoli, R. Campostrini, C. Gervais, F. Babonneau, J. Bill, G.D. Sorarù, and A. Navrotsky: Energetics and structure of polymer derived Si-(B-)O-C glasses: Effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 97, 303–309 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    H-J. Kleebe, G. Gregori, F. Babonneau, Y.D. Blum, D.B. MacQueen, and S. Masse: Evolution of C-rich SiCO ceramics. Part I. Characterization by integral spectroscopic techniques solid-state NMR and Raman spectroscopy. Int. J. Mater. Res. 97, 699–709 (2006).

    CAS  Google Scholar 

  29. 29.

    G.D. Sorarù, F. Dalcanale, R. Campostrini, A. Gaston, Y. Blum, S. Carturan, and P.R. Aravind: Novel polysiloxane and polycarbosilane aerogels via hydrosilylation of preceramic polymers. J. Mater. Chem. 22, 7676–7680 (2012).

    Article  CAS  Google Scholar 

  30. 30.

    G. Socrates: Infrared and Raman Characteristic Group Frequencies, 3rd ed. (John Wiley & Sons Ltd, West Sussex, England, 2001).

    Google Scholar 

  31. 31.

    I.M. El Nahhal, M.M. Chehimi, C. Cordier, and G. Dodin: XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems. J. Non-Cryst. Solids 275, 142–146 (2000).

    Article  Google Scholar 

  32. 32.

    J. Seitz, J. Bill, N. Eggerb, and F. Aldinger: Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc. 16, 885–891 (1996).

    CAS  Article  Google Scholar 

  33. 33.

    P. Dibandjo, S. Diré, F. Babonneau, and G.D. Soraru: Influence of the polymer architecture on the high temperature behavior of SiCO glasses: A comparison between linear- and cyclic-derived precursors. J. Non-Cryst. Solids 356, 132–140 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    N. Choong Kwet Yive, R.J. Corriu, D. Leclercq, P. Mutin, and A. Vioux: Silicon carbonitride from polymeric precursors: Thermal cross-linking and pyrolysis of oligosilazane model compounds. J. Chem. Mater. 4, 141–146 (1992).

    Article  Google Scholar 

  35. 35.

    R. Pohl, M. Dračínský, L. Slavětínská, and M. Buděšínský: The observed and calculated 1H and 13C chemical shifts of tertiary amines and their N-oxides. Magn. Reson. Chem. 49, 320–327 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    T.A. Pham, D-P. Kim, T-W. Lim, S-H. Park, D-Y. Yang, and K-S. Lee: Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 1235–1241 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    C. Tang, Y. Bando, D. Golberg, and F. Xu: Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42, 2625–2633 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    K. Yamamoto, Y. Koga, and S. Fujiwara: XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diamond Relat. Mater. 10, 1921–1926 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu: Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 1020–1024 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    G.D. Soraru, G.D. Andrea, and A. Glisenti: XPS characterization of gel-derived silicon oxycarbide glasses. Mater. Lett. 27, 1–5 (1996).

    CAS  Article  Google Scholar 

  41. 41.

    G. Mera, A. Navrotsky, S. Sen, H-J. Kleebe, and R. Riedel: Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale. J. Mater. Chem. A 1, 3826–3836 (2013).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The present work was financially supported by European Community ITN7 through MC-ITN FUNEA-Project 26487. The authors would like to thank Dr. Emanuela Callone of the University of Trento, Italy and Wenjie Li of the Technical University of Darmstadt, Germany for kind assistance in NMR and elemental analysis measurements, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Van Lam Nguyen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.L., Laidani, N.B. & Sorarù, G.D. N-doped polymer-derived Si(N)OC: The role of the N-containing precursor. Journal of Materials Research 30, 770–781 (2015). https://doi.org/10.1557/jmr.2015.44

Download citation