Abstract
Polymer precursors for Si(N)OC ceramics have been synthesized by hydrosilylation reaction of polyhydridomethylsiloxane (PHMS) with three different nitrogen containing compounds. The results obtained by combining characterization techniques such as FTIR, 13C- and 29Si-NMR confirm the occurrence of the cross-linking reaction between Si–H and vinyl groups. The structural characterization of the corresponding ceramic phase shows that the type of N-containing compounds strongly influences the pyrolytic transformation as well as the crystallization behavior of the final ceramics. Elemental analysis clearly indicates that N is present in the Si(N)OC matrix and the degree of N retention after pyrolysis is related to the type of N-containing starting compound. XPS data show that N–C bonds are present in the Si(N)OC ceramic samples even if only N–Si bonds are present in the starting N-containing precursors. However, if nitrogen atoms form bonds with sp2 carbon atoms in the preceramic polymer then a larger fraction of C–N bonds is retained in the final Si(N)OC ceramic.
This is a preview of subscription content, access via your institution.








References
- 1.
H. Bréquel, J. Parmentier, S. Walter, R. Badheka, G. Trimmel, S. Masse, J. Latournerie, P. Dempsey, C. Turquat, A. Desmartin-Chomel, L. Le Neindre-Prum, U.A. Jayasooriya, D. Hourlier, H-J. Kleebe, G.D. Sorarù, S. Enzo, and F. Babonneau: Systematic structural characterisation of the high temperature behaviour of nearly-stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 2585–2598 (2004).
- 2.
P. Colombo, G. Mera, R. Riedel, and G.D. Soraru: Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93 (7), 1–32 (2010).
- 3.
A. Saha, R. Raj, and D.L. Williamson: A model for the nanodomains in polymer-derived SiCO. J. Am. Ceram. Soc. 89, 2188–2195 (2006).
- 4.
S.J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel, and A. Navrotsky: 29Si and 13C solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem. Mater. 22, 6221–6228 (2010).
- 5.
N. Suyal, T. Krajewski, and M. Mennig: Sol-gel synthesis and microstructural characterization of silicon oxycarbide glass sheets with high fracture strength and high modulus. J. Sol-Gel Sci. Technol. 13, 995–999 (1998).
- 6.
V.L. Nguyen, V. Proust, C. Quievryn, S. Bernard, P. Miele, and G.D. Soraru: Processing, mechanical characterization, and alkali resistance of siliconboronoxycarbide (SiBOC) glass fibers. J. Am. Ceram. Soc. 97, 3143–3149 (2014).
- 7.
G.D. Soraru, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C.G. Pantano: Chemical durability of silicon oxycarbide glasses. J. Am. Ceram. Soc. 85, 1529–1536 (2002).
- 8.
M. Narisawa, T. Kawai, S. Watase, K. Matsukawa, T. Dohmaru, K. Okamura, and A. Iwase: Long-lived photoluminescence in amorphous Si-O-C(-H) ceramics derived from polysiloxanes. J. Am. Ceram. Soc. 95, 3935–3940 (2012).
- 9.
P.E. Sanchez-Jimenez and R. Raj: Lithium insertion in polymer-derived silicon oxycarbide ceramics. J. Am. Ceram. Soc. 93, 1127–1135 (2010).
- 10.
V.L. Nguyen, C. Zanella, P. Bettotti, and G.D. Soraru: Electrical conductivity of SiOCN ceramics by the powder-solution-composite technique. J. Am. Ceram. Soc. 97, 2525–2530 (2014).
- 11.
A. Karakuscu, R. Guider, L. Pavesi, and G.D. Soraru: White luminescence from sol–gel-derived SiOC thin films. J. Am. Ceram. Soc. 92, 2969–2974 (2009).
- 12.
H. Fukui, H. Ohsuka, T. Hino, and K. Kanamura: Silicon oxycarbides in hard-carbon microstructures and their electrochemical lithium storage. J. Electrochem. Soc. 160, 1276–1281 (2013).
- 13.
V.S. Pradeep, M. Graczyk-Zajac, M. Wilamowska, R. Riedel, and G.D. Soraru: Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics 262, 22–24 (2014).
- 14.
R. Riedel, L. Toma, E. Janssen, J. Nuffer, T. Melz, and H. Hanselka: Piezoresistive effect in SiOC ceramics for integrated pressure sensors. J. Am. Ceram. Soc. 93, 920–924 (2010).
- 15.
C. Turquat, H-J. Kleebe, G. Gregori, S. Walter, and G.D. Soraru: Transmission electron microscopy and electron energy-loss spectroscopy study of nonstoichiometric silicon-carbon-oxygen glasses. J. Am. Ceram. Soc. 96, 2189–2196 (2001).
- 16.
J. Cordelair and P. Greil: Electrical conductivity measurements as a microprobe for structure transitions in polysiloxane derived Si-O-C ceramics. J. Eur. Ceram. Soc. 20, 1947–1957 (2000).
- 17.
K. Wang, B. Ma, Y. Wang, and L. An: Complex impedance spectra of polymer-derived silicon oxycarbides. J. Am. Ceram. Soc. 96, 1363–1365 (2013).
- 18.
I. Menapace, G. Mera, R. Riedel, E. Erdem, R.A. Eichel, A. Pauletti, and G.A. Appleby: Luminescence of heat-treated silicon-based polymers: Promising materials for LED applications. J. Mater. Sci. 43, 5790–5796 (2008).
- 19.
V.S. Pradeep, M. Graczyk-Zajac, R. Riedel, and G.D. Soraru: New insights in to the lithium storage mechanism in polymer derived SiOC anode materials. Electrochim. Acta 119, 78–85 (2014).
- 20.
P. Kroll: Modeling the “free carbon” phase in amorphous silicon oxycarbide. J. Non-Cryst. Solids 351, 1121–1126 (2005).
- 21.
G.D. Sorarù, F. Babonneau, S. Maurina, and J. Vicens: Sol-gel synthesis of SiBOC glasses. J. Non-Cryst. Solids 224, 173–183 (1998).
- 22.
M.A. Schiavon, K.J. Ciuffi, and I.V.P. Yoshida: Glasses in the Si-O-C-N system produced by pyrolysis of polycyclic silazane/siloxane networks. J. Non-Cryst. Solids 353, 2280–2288 (2007).
- 23.
C. Gervais, F. Babonneau, N. Dallabona, and G.D. Soraru: Sol-gel-derived silicon-boron oxycarbide glasses containing mixed silicon oxycarbide (SiCxO4-x) and boron oxycarbide (BCyO3-y) units. J. Am. Ceram. Soc. 84, 2160–2164 (2001).
- 24.
R. Pena-Alonso, G. Mariotto, C. Gervais, F. Babonneau, and G.D. Soraru: New insights on the high temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses. Chem. Mater. 19, 5694–5702 (2007).
- 25.
A. Karakuscu, R. Guider, L. Pavesi, and G.D. Sorarù: Broad-band tunable visible emission of sol–gel derived SiBOC ceramic thin films. Thin Solid Films 519, 3822–3826 (2011).
- 26.
A. Klonczynski, G. Schneider, R. Riedel, and R. Theissmann: Influence of boron on the microstructure of polymer derived SiCO ceramics. Adv. Eng. Mater. 6, 64–68 (2004).
- 27.
A.H. Tavakoli, R. Campostrini, C. Gervais, F. Babonneau, J. Bill, G.D. Sorarù, and A. Navrotsky: Energetics and structure of polymer derived Si-(B-)O-C glasses: Effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 97, 303–309 (2014).
- 28.
H-J. Kleebe, G. Gregori, F. Babonneau, Y.D. Blum, D.B. MacQueen, and S. Masse: Evolution of C-rich SiCO ceramics. Part I. Characterization by integral spectroscopic techniques solid-state NMR and Raman spectroscopy. Int. J. Mater. Res. 97, 699–709 (2006).
- 29.
G.D. Sorarù, F. Dalcanale, R. Campostrini, A. Gaston, Y. Blum, S. Carturan, and P.R. Aravind: Novel polysiloxane and polycarbosilane aerogels via hydrosilylation of preceramic polymers. J. Mater. Chem. 22, 7676–7680 (2012).
- 30.
G. Socrates: Infrared and Raman Characteristic Group Frequencies, 3rd ed. (John Wiley & Sons Ltd, West Sussex, England, 2001).
- 31.
I.M. El Nahhal, M.M. Chehimi, C. Cordier, and G. Dodin: XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems. J. Non-Cryst. Solids 275, 142–146 (2000).
- 32.
J. Seitz, J. Bill, N. Eggerb, and F. Aldinger: Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc. 16, 885–891 (1996).
- 33.
P. Dibandjo, S. Diré, F. Babonneau, and G.D. Soraru: Influence of the polymer architecture on the high temperature behavior of SiCO glasses: A comparison between linear- and cyclic-derived precursors. J. Non-Cryst. Solids 356, 132–140 (2010).
- 34.
N. Choong Kwet Yive, R.J. Corriu, D. Leclercq, P. Mutin, and A. Vioux: Silicon carbonitride from polymeric precursors: Thermal cross-linking and pyrolysis of oligosilazane model compounds. J. Chem. Mater. 4, 141–146 (1992).
- 35.
R. Pohl, M. Dračínský, L. Slavětínská, and M. Buděšínský: The observed and calculated 1H and 13C chemical shifts of tertiary amines and their N-oxides. Magn. Reson. Chem. 49, 320–327 (2011).
- 36.
T.A. Pham, D-P. Kim, T-W. Lim, S-H. Park, D-Y. Yang, and K-S. Lee: Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 1235–1241 (2006).
- 37.
C. Tang, Y. Bando, D. Golberg, and F. Xu: Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42, 2625–2633 (2004).
- 38.
K. Yamamoto, Y. Koga, and S. Fujiwara: XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diamond Relat. Mater. 10, 1921–1926 (2001).
- 39.
C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu: Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 1020–1024 (2011).
- 40.
G.D. Soraru, G.D. Andrea, and A. Glisenti: XPS characterization of gel-derived silicon oxycarbide glasses. Mater. Lett. 27, 1–5 (1996).
- 41.
G. Mera, A. Navrotsky, S. Sen, H-J. Kleebe, and R. Riedel: Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale. J. Mater. Chem. A 1, 3826–3836 (2013).
ACKNOWLEDGMENTS
The present work was financially supported by European Community ITN7 through MC-ITN FUNEA-Project 26487. The authors would like to thank Dr. Emanuela Callone of the University of Trento, Italy and Wenjie Li of the Technical University of Darmstadt, Germany for kind assistance in NMR and elemental analysis measurements, respectively.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, V.L., Laidani, N.B. & Sorarù, G.D. N-doped polymer-derived Si(N)OC: The role of the N-containing precursor. Journal of Materials Research 30, 770–781 (2015). https://doi.org/10.1557/jmr.2015.44
Received:
Accepted:
Published:
Issue Date: