Electrical properties of SnO2:Sb ultrathin films prepared by colloidal deposition process


In the present work, we are investigating the electronic transport mechanism for antimony-doped tin oxide (ATO) ultrathin films produced by a colloidal deposition process (CDP) of nanocrystals synthesized via a solvothermal route in organic medium. The ATO ultrathin films were prepared from nanoparticles containing 9 mol% of Sb and the observed electrical resistivity at room temperature was 1.55, 1.10 × 10−1, and 1.83 × 10−3 Ω cm, respectively, for the 40, 45, and 71 nm films. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were carried out to investigate the films and electrical resistivity measurements taken in the four-probe mode with temperature ranging from −260 to 27 °C (13–300 K ± 0.1 K). Results show a good data fitting on Mott’s two-dimensional (2D) noninteracting variable range hopping for the 45 nm thin film, which is not further observed for the ATO ultrathin films obtained from CDP.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W.J. Parak, T. Hyeon, B.A. Korgel, C.B. Murray, and W. Heiss: Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    R.H. Gonçalves and E.R. Leite: The colloidal nanocrystal deposition process: An advanced method to prepare high performance hematite photoanodes for water splitting. Energy Environ. Sci. 7, 2250 (2014).

    Article  Google Scholar 

  3. 3.

    R.H. Gonçalves, L.D.T. Leite, and E.R. Leite: Colloidal WO3 nanowires as a versatile route to prepare a photoanode for solar water splitting. ChemSusChem 5, 234 (2012).

    Google Scholar 

  4. 4.

    R.H. Gonçalves, B.H.R. Lima, and E.R. Leite: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133, 6012 (2011).

    Article  Google Scholar 

  5. 5.

    A.N. Pinheiro, E.G.S. Firmiano, A.C. Rabelo, C.J. Dalmaschio, and E.R. Leite: Revisiting SrTiO3 as a photoanode for water splitting: Development of thin films with enhanced charge separation under standard solar irradiation. RSC Adv. 4, 2029 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    T.G. Conti, A.J. Chiquito, R.O. da Silva, E. Longo, and E.R. Leite: Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized by a nonaqueous sol–gel method. J. Am. Ceram. Soc. 93, 3862 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    M. Batzill and U. Diebold: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    D.S.D. Amma, V.K. Vaidyan, and P.K. Manoj: Structural, electrical and optical studies on chemically deposited tin oxide films from inorganic precursors. Mater. Chem. Phys. 93, 194 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    A.V. Singh, R.M. Mehra, A. Yoshida, and A. Wakahara: Doping mechanism in aluminum doped zinc oxide films. J. Appl. Phys. 95, 3640 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathouský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly: Transparent conductive films of indium tin oxide with 3D mesopore architecture. Adv. Mater. 18, 2980 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    K. James, H.P. Schweizer, and W. Kern: Chemical vapor deposition of antimony-doped tin oxide films formed from dibutyl tin diacetate. J. Electrochem. Soc.: Solid State Sci. Technol. 123, 270 (1976).

    Article  Google Scholar 

  12. 12.

    E. Shanthi, V. Dutta, A. Banerjee, and K.L. Chopra: Electrical and optical properties of undoped and antimony-doped tin oxide films. J. Appl. Phys. 51, 6243 (1980).

    CAS  Article  Google Scholar 

  13. 13.

    H. Kaneko and K. Miyake: Physical properties of antimony-doped tin oxide thick films. J. Appl. Phys. 53, 3629 (1982).

    CAS  Article  Google Scholar 

  14. 14.

    K.H. Kim and S.W. Lee: Effect of antimony addition on electrical and optical properties of tin oxide film. J. Am. Ceram. Soc. 77, 915 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    C. Terrier, J.P. Chatelon, and J.A. Roger: Electrical and optical properties of Sb:SnO2 thin films obtained by the sol–gel method. Thin Solid Films 295, 95 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    K.Y. Rajpure, M.N. Kusumade, M.N. Neumann-Spallart, and C.H. Bhosale: Effect of Sb doping on properties of conductive spray deposited SnO2 thin films. Mater. Chem. Phys. 64, 184 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    K. Tsukuma, T. Akiyama, and H. Imai: Hydrolysis deposition of thin films of antimony-doped tin oxide. J. Am. Ceram. Soc. 84, 869 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    B. Thangaraju: Structural, and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films 402, 71 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    E. Elangovan and K. Ramamurthi: A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Appl. Surf. Sci. 249, 183 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    J. Zhang, L. Gao, and M. Chen: Spark plasma sintering of high-density antimony-doped tin oxide ceramics from nanoparticles. J. Am. Ceram. Soc. 89, 3874 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    T.R. Giraldi, M.T. Escote, A.P. Maciel, E. Longo, E.R. Leite, and J.A. Varela: Transport and sensors properties of nanostructured antimony-doped tin oxide films. Thin Solid Films 515, 2678 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    V. Müller, M. Rasp, G. Stefanic, J. Ba, S. Günther, J. Rathousky, M. Niederberger, and D. Fattakhova-Rohlfing: Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol–gel procedure. Chem. Mater. 21, 5229 (2009).

    Article  Google Scholar 

  23. 23.

    Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly: Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. ACS Nano 3, 1373 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    L. Luo, D. Bozyigit, V. Wood, and M. Niederberger: High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem. Mater. 25, 4901 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    C.A. Hoel, T.O. Mason, J.F. Gaillard, and K.R. Poeppelmeier: Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chem. Mater. 22, 3569 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    M. Niederberger: Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    J.H. Ba, J. Polleux, M. Antonietti, and M. Niederberger: Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 17, 2509 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    N. Pinna: The benzyl alcohol route: An elegant approach towards organic–inorganic hybrid nanomaterials. J. Mater. Chem. 17, 2769 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    V. Skoromets, H. Nemec, J. Kopecek, P. Kuzel, K. Peters, D. Fattakhova-Rohlfing, A. Vetushka, M. Muller, K. Ganzerova, and A. Fejfar: Conductivity mechanisms in Sb-doped SnO2 nanoparticle assemblies: DC and terahertz regime. J. Phys. Chem. C 119, 19485 (2015).

    CAS  Article  Google Scholar 

Download references


FAPESP/CEPID 2013/07296-2 and CNPq are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Edson R. Leite.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conti, T.G., Chiquito, A.J. & Leite, E.R. Electrical properties of SnO2:Sb ultrathin films prepared by colloidal deposition process. Journal of Materials Research 31, 148–153 (2016). https://doi.org/10.1557/jmr.2015.387

Download citation