Engineered 2D nanomaterials–protein interfaces for efficient sensors

Abstract

This article features the importance of nanomaterial–protein interfaces, with a special interest on two-dimensional (2D) nanomaterials, for next generation sensors and electronics. Graphene, the first isolated and studied 2D nanomaterial, is taken as the material of most interest and then focused on its engineering by heteroatom doping. The success of graphene engineering for sensors widened the search for better and efficient biosensor platforms of other layered materials such as boron nitride and transition metal dichalcogenides. But functionalization of 2D backbones with biomolecules often ends up with the disruption of the biological activities due to various reasons. This has to be fundamentally studied and corrected for the clinical implementation of these materials based novel sensing platforms in point-of-care devices and micro-fluidic chips. At the end, importance of various 2D materials–biomolecule interfaces is discussed, and MoS2 based label-free biosensor is highlighted. A method for the modification of MoS2–biomolecule interaction via covalent functionalization of oxygen functionalities in MoS2 is also proposed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    Y. Yang, A.M. Asiri, Z. Tang, D. Du, and Y. Lin: Graphene based materials for biomedical applications. Mater. Today 16(10), 365 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    M. Pumera: Graphene in biosensing. Mater. Today 14(7–8), 308 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, and P.M. Ajayan: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499, 419 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K. Christian Kemp, P. Hobza, R. Zboril, and K.S. Kim: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    H. Qiyuan, W. Shixin, Y. Zongyou, and H. Zhang: Graphene-based electronic sensors. Chem. Sci. 3, 1764 (2012).

    Article  CAS  Google Scholar 

  7. 7.

    T.V. Vineesh, S. Alwarappam, and T.N. Narayanan: The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale 7, 6504 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    S. Kundu, R.M. Yadav, M.V. Shelke, T.N. Narayanan, R. Vajtai, P.M. Ajayan, and V.K. Pillai: Synthesis of N, F and S Co-doped graphene quantum dots. Nanoscale 7, 11515 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen: Super paramagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, and K. Kostarelos: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U. S. A. 103, 3357 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    X. Li, X. Huang, D. Liu, X. Wang, S. Song, L. Zhou, and H. Zhang: Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 115, 21567 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    H.P. Cong, J.J. He, Y. Lu, and S.H. Yu: Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 6, 169 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, and A.F. Hebard: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    D. Chen, L.H. Tang, and J.H. Li: Graphene based materials in electrochemistry. Chem. Soc. Rev. 39, 3157 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    S.K. Min, W.Y. Kim, Y. Cho, and K.S. Kim: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    A.H. Loo, A. Bonanni, A. Ambrosi, H.L. Poh, and M. Pumera: Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale 4(3), 921 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    A.H. Loo, A. Bonanni, and M. Pumera: Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    L. Hou, Y. Cui, M. Xu, Z. Gao, J. Huang, and D. Tang: Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens. Bioelectron. 47, 149 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim: Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    R. Zboril, F. Karlicky, A.B. Bourlinos, B. Athanasios, T.A. Steriotis, A.K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, and M. Otyepka: Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6, 2885 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    F. Karlicky, R. Zboril, and M. Otyepk: Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. J. Chem. Phys. 137, 034709 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    Y.H. Zhang, K.G. Zhou, K.F. Xie, J. Zeng, H.L. Zhang, and Y. Peng: Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. Nanotechnology 21, 065201 (2010).

    Article  CAS  Google Scholar 

  23. 23.

    A.G. Crevillen, M. Avila, M. Pumera, M.C. Gonzalez, and A. Escarpa: Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. Anal. Chem. 79, 7408 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    A.G. Crevillen, M. Pumera, M.C. Gonzales, and A. Escarpa: Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip 9, 346 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    H.G. Sudibya, Q.Y. He, H. Zhang, and P. Chen: Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5, 1990 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Q.Y. He, H.G. Sudibya, Z.Y. Yin, S.X. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4, 3201 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    J.W. Yi, J. Park, N.J. Singh, I.J. Lee, K.S. Kim, and B.H. Kim: Quencher-free molecular beacon: Enhancement of the signal-to-background ratio with graphene oxide. Bioorg. Med. Chem. Lett. 21, 704 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    J.S. Lee, H.A. Joung, M.G. Kim, and C.B. Park: Nanopore translocation dynamics of a single DNA-bound protein. ACS Nano 6, 2978 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    V.K. Kodali, J. Scrimgeour, S. Kim, J.H. Hankinson, K.M. Carrol, W.A. Heer, C. Berger, and J.E. Curtis: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27, 863 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    T. Alava, A. Jason Mann, C. Théodore, J.J. Benitez, R.D. William, J.M. Parpia, and H.G. Craighead: Control of the graphene-protein interface is required to preserve adsorbed protein function. Anal. Chem. 85, 2754 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    C.A. Haynes and W. Norde: Globular proteins at solid/liquid interfaces. Colloids Surf., B 2, 517 (1994).

    CAS  Article  Google Scholar 

  32. 32.

    P. Roach, D. Farrar, and C.C. Perry: Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    A.A. Green and M.C. Hersam: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    M. Gurusaran, D. Rai, S. Qian, K. Weiss, V. Urban, P. Li, L. Ma, T.N. Narayanan, P.M. Ajayan, K. Sekar, S. Viswanathan, and V. Renugopalakrishanan: Small angle neutron scattering studies of glucose oxidase immobilized on single layer graphene: Relevant to protein microfluidic chip. Biophys. J. 108(2), 327a (2015).

    Article  Google Scholar 

  35. 35.

    D. Thirumalai, G. Reddy, and J.E. Straub: Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45(1), 83 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Y. Zhang, C. Wu, S. Guo, and J. Zhang: Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2(1), 27 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    D.P. Hashim, T.N. Narayanan, J.M. Romo-Herrera, D.A. Cullen, M.G. Hahm, P. Lezzi, J.R. Suttle, D. Kelkhoff, E. Munoz-Sandoval, S. Ganguli, A.K. Roy, D.J. Smith, R. Vajtai, B.G. Sumpter, V. Meunier, H. Terrones, M. Terrones, and P.M. Ajayan: Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2, 363 (2012).

    Article  CAS  Google Scholar 

  38. 38.

    N. Kumar, B.K. Gupta, A.K. Srivastava, H.S. Patel, P. Kumar, I. Bannerjee, T.N. Narayanan, and G.D. Varma: Multifunctional two-dimensional reduced graphene oxide thin film for gas sensing and antibacterial applications. Sci. Adv. Mater. 7(6), 1125 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    P.M. Sudeep, T.N. Narayanan, A. Ganesan, M.M. Shaijumon, H. Yang, S. Ozden, P.K. Patra, M. Pasquali, R. Vajtai, S. Ganguli, A.K. Roy, M.R. Anantharaman, and P.M. Ajayan: Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 7(8), 7034 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huangb, and P. Chen: Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 43, 7067 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    L. Liu and Z. Shen: Bandgap engineering of graphene: A density functional theory study. Appl. Phys. Lett. 95, 252104 (2009).

    Article  CAS  Google Scholar 

  42. 42.

    F. Schwierz: Graphene transistors. Nat. Nanotechnol. 5, 487 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Y. Liu, X. Dong, and P. Chen: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    H. Chang, L. Tang, Y. Wang, J. Jiang, and J. Li: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Y. Wang, Z. Li, D. Hu, C-T. Lin, J. Li, and Y. Lin: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    C.H. Lu, C.L. Zhu, J. Li, J.J. Liu, X. Chen, and H.H. Yang: Using graphene to protect DNA from cleavage during cellular delivery. Chem. Commun. 46, 3116 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    Z. Liu, J.T. Robinson, X. Sun, and H. Dai: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876 (2008).

    CAS  Article  Google Scholar 

  48. 48.

    Q. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, and H. Dai: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    H. Huang, Z. Li, J. She, and W. Wang: Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys. 111, 054317 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A.L. Mohana Reddy, and P.M. Ajayan: Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 3, 986 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    M. Wu, C. Cao, and J.Z. Jiang: Light non-metallic atom (B, N, O and F)-doped graphene: A first-principles study. Nanotechnology 21, 505202 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    T.B. Martins, R.H. Miwa, A.J.R.D. Silva, and A. Fazzio: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007).

    CAS  Article  Google Scholar 

  53. 53.

    L.S. Panchokarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726 (2009).

    Google Scholar 

  54. 54.

    Z. Li, Z.Y. Zhang, R.P. Liang, Y.H. Li, and J.D. Qiu: Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal. Chem. 86, 4423 (2014).

    Article  CAS  Google Scholar 

  55. 55.

    R.X.K. Kong and Q.W. Chen: The positive influence of boron-doped graphene with pyridine as a probe molecule on SERS: A density functional theory study. J. Mater. Chem. 22, 15336 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D.V. Vyalikh: Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 11, 5401 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    L. Ruitao, Q. Li, A.R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. Laura El, R. Cruz-Silva, H.R. Gutierrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, and M. Terrones: Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012).

    Article  CAS  Google Scholar 

  58. 58.

    S.Z.H. Sheng, X.Q. Zheng, J.Y. Xu, W.J. Bao, F.B. Wang, and X.H. Xia: Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34, 125 (2012).

    CAS  Article  Google Scholar 

  59. 59.

    T.H.X. Fan, Y. Li, D. Wu, H.M. Ma, K.X. Mao, D.W. Fan, B. Du, H. Li, and Q. Wei: Electrochemical bisphenol A sensor based on N-doped graphene sheets. Anal. Chim. Acta 711, 24 (2012).

    CAS  Article  Google Scholar 

  60. 60.

    S. Mukherjee and T.P. Kaloni: Electronic properties of boron and nitrogen doped graphene: A first principles study. J. Nanopart. Res. 14, 1059 (2012).

    Article  CAS  Google Scholar 

  61. 61.

    B. Muchharla, A. Pathak, Z. Liu, L. Song, T. Jayasekera, S. Kar, R. Vajtai, L. Balicas, P.M. Ajayan, S. Talapatra, and N. Ali: Tunable electronics in large-area atomic layers of boron–nitrogen–carbon. Nano Lett. 13, 3476 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    G.H. Yang, Y.H. Zhou, J.J. Wu, J.T. Cao, L.L. Li, H.Y. Liu, and J.J. Zhu: Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv. 3, 22597 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    P.A. Denis: Concentration dependence of the band gaps of phosphorus and sulfur doped graphene. Comput. Mater. Sci. 67, 203 (2013).

    CAS  Article  Google Scholar 

  64. 64.

    O. Leenaerts, H. Peelaers, A.D. Hernandez-Nieves, B. Partoens, and F.M. Peeters: First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010).

    Article  CAS  Google Scholar 

  65. 65.

    S. Boopathi, T.N. Narayanan, and S. Senthil Kumar: Improved heterogeneous electron transfer kinetics of fluorinated graphene derivaties. Nanoscale 6, 10140 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    M.M. Yang, L. Zhou, J.Y. Wang, Z.F. Liu, and Z.R. Liu: Evolutionary chlorination of graphene: From charge-transfer complex to covalent bonding and nonbonding. J. Phys. Chem. C 116, 844 (2012).

    CAS  Article  Google Scholar 

  67. 67.

    H.L. Poh, P. Simek, Z. Sofer, and M. Pumera: Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7(6), 5262 (2013).

    CAS  Article  Google Scholar 

  68. 68.

    P.A. Denis, R. Faccio, and A.W. Mombru. Is it possible to dope single-walled carbon nanotubes and graphene with sulphar. Chem. Phys. Chem. 10, 715 (2009).

    CAS  Article  Google Scholar 

  69. 69.

    Y.Y. Shao, S. Zhang, M.H. Engelhard, G.S. Li, G.C. Shao, Y. Wang, J. Liu, I.A. Aksay, and Y.H. Lin: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491 (2010).

    CAS  Article  Google Scholar 

  70. 70.

    P.P. Guo, F. Xiao, Q. Liu, H.F. Liu, Y.L. Guo, J.R. Gong, S. Wang, and Y.Q. Liu: One-pot microbial method to synthesize dual-doped graphene and its use as high-performance electrocatalyst. Sci. Rep. 3, 3499 (2013).

    Article  Google Scholar 

  71. 71.

    B. Kumar, K. Min, M. Bashirzadeh, A. Barati Farimani, M.H. Bae, D. Estrada, Y.D. Kim, P. Yasaei, Y.D. Park, E. Pop, N.R. Aluru, and A. Salehi-Khojin: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013).

    CAS  Article  Google Scholar 

  72. 72.

    H.Y. Jeong, D.S. Lee, H.K. Choi, D.H. Lee, J.E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, and S.Y. Choi: Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96, 213105 (2010).

    Article  CAS  Google Scholar 

  73. 73.

    K.H. Yu, P.X. Wang, G.H. Lu, K.H. Chen, Z. Bo, and J.H. Chen: Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2, 537 (2011).

    CAS  Article  Google Scholar 

  74. 74.

    N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, and H. Marchetto: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506 (2008).

    CAS  Article  Google Scholar 

  75. 75.

    J. Ortiz-Medina, F. López-Urías, H. Terrones, F.J. Rodríguez-Macías, M. Endo, and M. Terrones: Differential response of doped/defective graphene and dopamine to electric fields: A density functional theory study. J. Phys. Chem. C 119, 13972 (2015).

    CAS  Article  Google Scholar 

  76. 76.

    C. Cazorla: Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene. Thin Sold Films 518, 6951 (2010).

    CAS  Article  Google Scholar 

  77. 77.

    Y.B. Tang, L.C. Yin, Y. Yang, X.H. Bo, Y.L. Cao, H.E. Wang, W.J. Zhang, I. Bello, S.T. Lee, H.M. Cheng, and Ch.S. Lee: Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3), 1970 (2012).

    CAS  Article  Google Scholar 

  78. 78.

    C. Parra, F. Montero-Silva, R. Henríquez, M. Flores, C. Garín, C. Ramírez, M. Moreno, J. Correa, M. Seeger, and P. Häberle: Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings. ACS Appl. Mater. Interfaces 7(12), 6430 (2015).

    CAS  Article  Google Scholar 

  79. 79.

    T. Gao, X. Song, H. Du, Y. Nie, Y. Chen, Q. Ji, J. Sun, Y. Yang, and Y.Z.Z. Liu: Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 6, 6835 (2015).

    CAS  Article  Google Scholar 

  80. 80.

    Y. Xue, Q. Liu, G. He, K. Xu, L. Jiang, X. Hu, and J. Hu: Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res. Lett. 8, 49 (2013).

    Article  CAS  Google Scholar 

  81. 81.

    J. Wang, R. Zhao, Z. Liu, and Z. Liu: Widely tunable carrier mobility of boron nitride-embedded graphene. Small 9, 1373 (2013).

    CAS  Article  Google Scholar 

  82. 82.

    P. Karamanis and C. Pouchan: Electric property variations in nanosized hexagonal boron nitride/graphene hybrids. J. Phys. Chem. C 119(21), 11872 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    Y. Guo and W. Guo: Insulating to metallic transition of an oxidized boron nitride nanosheet coating by tuning surface oxygen adsorption. Nanoscale 6, 3731 (2014).

    CAS  Article  Google Scholar 

  84. 84.

    L.A. Ponomarenko, A.K. Geim, A.A. Zhukov, R. Jalil, S.V. Morozov, K.S. Novoselov, I.V. Grigorieva, E.H. Hill, V.V. Cheianov, V.I. Falko, K. Watanabe, T. Taniguchi, and R.V. Gorbachev: Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958 (2011).

    CAS  Article  Google Scholar 

  85. 85.

    P. Feng, E.Y. Li, M. Sajjad, A. Aldalbahi, and J. Chu: Boron nitride nanosheets and their electrical tunneling effect. Sci. Adv. Mater. 7(7), 1326 (2015).

    CAS  Article  Google Scholar 

  86. 86.

    Q. Cai, L.H. Li, Y. Yu, Y. Liu, S. Huang, Y. Chen, K. Watanabe, and T. Taniguchi: Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 7761 (2015).

    CAS  Article  Google Scholar 

  87. 87.

    H. Hirai, H. Tsuchiya, Y. Kamakura, N. Mori, and M. Ogawa: Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703 (2014).

    Article  CAS  Google Scholar 

  88. 88.

    J. Wang, R. Zhao, M. Yang, Z. Liu, and Z. Liu: Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 138, 084701 (2013).

    Article  CAS  Google Scholar 

  89. 89.

    W. Liu, S. Krämer, D. Sarkar, H. Li, P.M. Ajayan, and K. Banerjee: Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26(2), 907 (2014).

    Article  CAS  Google Scholar 

  90. 90.

    U. Ghoshdastider, W. Rongliang, B. Trzaskowskib, K. Mlynarczykb, P. Misztab, M. Gurusaran, S. Viswanathan, V. Renugopalakrishn, and S. Filipek: Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Adv. 5, 13570 (2015).

    CAS  Article  Google Scholar 

  91. 91.

    S. Viswanathan, T.N. Narayanan, K. Aran, K.D. Fink, J. Paredes, P.M. Ajayan, S. Filipek, P. Miszta, H.C. Tekin, F. Inci, U. Demirci, P. Li, K.I. Bolotin, D. Liepmann, and V. Renugopalakrishanan: Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 18(9) 513 (2015).

    CAS  Article  Google Scholar 

  92. 92.

    D. Sarkar, W. Liu, X. Xie, A. Anselmo, S. Mitragotri, and K. Banerjee: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992 (2014).

    CAS  Article  Google Scholar 

  93. 93.

    R. Zhou: Modeling of Nanotoxicity—Molecular Interaction of Nanomaterials with Biomachines (Springer International Publishing: Switzerland, 2015); p. 127.

    Book  Google Scholar 

  94. 94.

    L. Zhou, B. He, Y. Yang, and Y. He: Facile approach to surface functionalized MoS2 nanosheets. RSC Adv. 4, 32570 (2014).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

K.K.T. and T.N.N. acknowledge TIFR-Centre for Interdisciplinary Sciences (TCIS), Hyderabad, India for the financial support. V.R. and S.V. acknowledge Rothschild Foundation for support of our research.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tharangattu N. Narayanan or Venkatesan Renugopalakrishnan.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tadi, K.K., Narayanan, T.N., Arepalli, S. et al. Engineered 2D nanomaterials–protein interfaces for efficient sensors. Journal of Materials Research 30, 3565–3574 (2015). https://doi.org/10.1557/jmr.2015.349

Download citation