Focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of metallic particles

Abstract

Microwave sintering is a novel and efficient technology for the rapid preparation of metallic materials. In this paper, an investigation has been performed on the distribution of microwave electromagnetic fields in a metallic particle system and its influence on sintering behavior. The results show that the microstructure of the “metallic-void” will induce a nonuniform distribution and focusing effect of electromagnetic fields during microwave processing, which may accelerate the sintering process. However, further study shows that the focusing effect will decline as the neck grows larger, and will also decline from outside to inside within the loosely packed powder system, which will result in the slowdown of the sintering rate. These results were supported by the synchrotron radiation computed tomography experimental observation of the microstructure evolution of metallic powders during an entire uninterrupted microwave sintering process.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    P. Yadoji, R. Peelamedu, D. Agrawal, and R. Roy: Microwave sintering of Ni-Zn ferrites: Comparison with conventional sintering. Mater. Sci. Eng., B 98, 269 (2003).

    Article  Google Scholar 

  2. 2.

    D. Agrawal: Latest global developments in microwave materials processing. Mater. Res. Innovations 14(1), 3 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    D.E. Clark, D.C. Folz, and J.K. West: Processing materials with microwave energy. Mater. Sci. Eng., A 287, 153 (2000).

    Article  Google Scholar 

  4. 4.

    M. Oghbaei and O. Mirzaee: Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    R.R. Menezes, P.M. Souto, and R.H.G.A. Kiminami: Microwave hybrid fast sintering of porcelain bodies. J. Mater. Process. Technol. 190, 223 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    J. Cheng, D. Agrawal, Y. Zhang, and R. Roy: Microwave sintering of transparent alumina. Mater. Lett. 56, 587 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    R. Roy, D. Agrawal, J. Cheng, and Sh. Gedevanishvili: Full sintering of powdered-metal bodies in a microwave field. Nature 339, 668 (1999).

    Article  Google Scholar 

  8. 8.

    B.A. Wilson, K.Y. Lee, and E.D. Case: Diffusive crack-healing behavior in polycrystalline alumina: A comparison between microwave annealing and conventional annealing. Mater. Res. Bull. 32(12), 1607 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    M.A. Janney, H.D. Kimrey, M.A. Schmidt, and J.O. Kiggans: Grain growth in microwave-annealed alumina. J. Am. Ceram. Soc. 74(7), 1675 (1991).

    CAS  Article  Google Scholar 

  10. 10.

    M.A. Janney, H.D. Kimrey, W.R. Allen, and J.O. Kiggans: Enhanced diffusion in sapphire during microwave heating. J. Mater. Sci. 32, 1347 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    D. Demirskyi, D. Agrawal, and A. Ragulya: Neck growth kinetics during microwave sintering of nickel powder. J. Alloys Compd. 509(5), 1790 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    N. Yoshikawa: Fundamentals and applications of microwave heating of metals. J. Microwave Power Electromagn. Energy 44(1), 4 (2010).

    Article  Google Scholar 

  13. 13.

    D. Demirskyi, D. Agrawal, and A. Ragulya: Neck growth kinetics during microwave sintering of copper. Scr. Mater. 62, 552 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    D. Demirskyi, D. Agrawal, and A. Ragulya: Neck formation between copper spherical particles under single-mode and multimode microwave sintering. Mater. Sci. Eng., A 527, 2142 (2010).

    Article  Google Scholar 

  15. 15.

    T. Saji: Microwave Sintering of Large Products. In Microwave Processing of Materials V, M.F. Iskander, J.O. Kiggins, Jr., and J.C. Bolomey eds.; Materials Research Society: Pittsburgh, PA, 1996.

    Google Scholar 

  16. 16.

    A. Birnboim, J.P. Calame, and Y. Carmel: Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave. J. Appl. Phys. 85, 478 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    J. Ma, J.F. Diehl, E.J. Johnson, K.R. Martin, N.M. Miskovsky, C.T. Smith, G.J. Weisel, B.L. Weiss, and D.T. Zimmerman: Systematic study of microwave absorption, heating and microstructure evolution of porous copper powder metal compacts. J. Appl. Phys. 101, 074906 (2007).

    Article  Google Scholar 

  18. 18.

    T. Galek, K. Porath, E. Burkel, and U. van Rienen: Extraction of effective permittivity and permeability of metallic powders in the microwave range. Modell. Simul. Mater. Sci. Eng. 18, 025015 (2010).

    Article  Google Scholar 

  19. 19.

    J. Cheng, R. Roy, and D. Agrawal: Radically different effects on materials by separated microwave electric and magnetic fields. Mater. Res. Innovations 5, 170 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    K.I. Rybakov, V.E. Semenov, S.V. Egorov, A.G. Eremeev, I.V. Plotnikov, and Yu.V. Bykov: Microwave heating of conductive powder materials. J. Appl. Phys. 99, 023506 (2006).

    Article  Google Scholar 

  21. 21.

    R. Roy, P.D. Peelamedu, L. Hurtt, J.P. Cheng, and D. Agrawal: Definitive experimental evidence for microwave effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds. Mater. Res. Innovations 6, 128 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    F. Xu, Y. Li, X. Hu, Y. Niu, J. Zhao, and Z. Zhang: In situ investigation of metal’s microwave sintering. Mater. Lett. 67, 162 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    X. Li and X.F. Hu: Synchrotron radiation tomography for reconstruction of layer structures and internal damage of composite material. Chin. J. Lasers, B B8(6), 503 (1999).

    Google Scholar 

  24. 24.

    K.I. Rybakov, E.A. Olevsky, and E.V. Krikun: Microwave sintering: Fundamentals and modeling. J. Am. Ceram. Soc. 96(4), 1003 (2013).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by National Nature Science Foundation of China under the Contract Nos. 11272305, 11402160 and 11390362. The authors warmly thank Niu Yu, Hongyan Qu and Kang Dan for the assistance in conducting the experiment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, F., Hu, X. et al. Focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of metallic particles. Journal of Materials Research 30, 3663–3670 (2015). https://doi.org/10.1557/jmr.2015.344

Download citation