Mechanical properties of two-dimensional materials and heterostructures

Abstract

Mechanical properties are of fundamental importance in materials science and engineering, and have been playing a great role in various materials applications in the human history. Measurements of mechanical properties of 2-dimensional (2D) materials, however, are particularly challenging. Although various types of 2D materials have been intensively explored in recent years, the investigation of their mechanical properties lags much behind that of other properties, leading to lots of open questions and challenges in this research field. In this review, we first introduce the nanoindentation technique with atomic force microscopy to measure the elastic properties of graphene and 2D transition metal dichalcogenides. Then we review the effect of defects on mechanical properties of 2D materials, including studies on naturally defective chemical-vapor-deposited and intentionally defective 2D materials. Lastly, we introduce a nano-electromechanical device, resonators, built on the basis of the excellent mechanical properties of 2D materials.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    E.W. Wong, P.E. Sheehan, and C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    C. Lee, X.D. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Y.J. Tian, B. Xu, D.L. Yu, Y.M. Ma, Y.B. Wang, Y.B. Jiang, W.T. Hu, C.C. Tang, Y.F. Gao, K. Luo, Z.S. Zhao, L.M. Wang, B. Wen, J.L. He, and Z.Y. Liu: Ultrahard nanotwinned cubic boron nitride. Nature 493(7432), 385 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc: A comprehensive review of zno materials and devices. J. Appl. Phys. 98(4), 103 (2005).

    Article  CAS  Google Scholar 

  6. 6.

    J.Q. Wu: When group-iii nitrides go infrared: New properties and perspectives. J. Appl. Phys. 106(1), 011101 (2009).

    Article  CAS  Google Scholar 

  7. 7.

    Y.G. Sun and J.A. Rogers: Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    J.A. Rogers, T. Someya, and Y.G. Huang: Materials and mechanics for stretchable electronics. Science 327(5973), 1603 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, and J.A. Rogers: Epidermal electronics. Science 333(6044), 838 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, and R.E. Smalley: C-60-buckminsterfullerene. Nature 318(6042), 162 (1985).

    CAS  Article  Google Scholar 

  11. 11.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Dai: Carbon nanotubes: Synthesis, integration, and properties. Accounts Chem. Res. 35(12), 1035 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, and Y.Q. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 4 (2010).

    Article  CAS  Google Scholar 

  20. 20.

    A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Y.B. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    M. Liu, X.B. Yin, E. Ulin-Avila, B.S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang: A graphene-based broadband optical modulator. Nature 474(7349), 64 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    L. Ju, B.S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X.G. Liang, A. Zettl, Y.R. Shen, and F. Wang: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu, and W. Yao: Coupled spin and valley physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys. Rev. Lett. 108(19), 5 (2012).

    Article  CAS  Google Scholar 

  26. 26.

    K.F. Mak, K.L. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan: Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Z.L. Ye, T. Cao, K. O’Brien, H.Y. Zhu, X.B. Yin, Y. Wang, S.G. Louie, and X. Zhang: Probing excitonic dark states in single-layer tungsten disulphide. Nature 513(7517), 214 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    J. Kim, X.P. Hong, C.H. Jin, S.F. Shi, C.Y.S. Chang, M.H. Chiu, L.J. Li, and F. Wang: Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346(6214), 1205 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, and Z.L. Wang: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19(16), 2112 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Zhu, F. Xu, Q.Q. Qin, W.Y. Fung, and W. Lu: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9(11), 3934 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    K.T. Wan, S. Guo, and D.A. Dillard: A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425(1–2), 150 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    U. Komaragiri, M.R. Begley, and J.G. Simmonds: The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 72(2), 203 (2005).

    Article  Google Scholar 

  34. 34.

    O.L. Blakslee: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373 (1970).

    CAS  Article  Google Scholar 

  35. 35.

    H. Zhao, K. Min, and N.R. Aluru: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    G. Van Lier, C. Van Alsenoy, V. Van Doren, and P. Geerlings: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326(1–2), 181 (2000).

    Article  Google Scholar 

  37. 37.

    F. Liu, P.M. Ming, and J. Li: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B. 76(6), 7 (2007).

    Google Scholar 

  38. 38.

    N.M. Bhatia and W. Nachbar: Finite indentation of elastic-perfectly plastic membranes by a spherical indenter. Int. J. NonLinear Mech. 3(3), 307 (1968).

    Article  Google Scholar 

  39. 39.

    P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, and D.A. Muller: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    R. Dettori, E. Cadelano, and L. Colombo: Elastic fields and moduli in defected graphene. J. Phys.: Condens. Matter 24(10), 10 (2012).

    Google Scholar 

  41. 41.

    N.N. Jing, Q.Z. Xue, C.C. Ling, M.X. Shan, T. Zhang, X.Y. Zhou, and Z.Y. Jiao: Effect of defects on Young’s modulus of graphene sheets: A molecular dynamics simulation. RSC Adv. 2(24), 9124 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    R. Grantab, V.B. Shenoy, and R.S. Ruoff: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006), 946 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    J. Wei, J.T. Wu, H.Q. Yin, X.H. Shi, R.G. Yang, and M. Dresselhaus: The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11(9), 759 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, and A.I. Kirkland: Dislocation-driven deformations in graphene. Science 337(6091), 209 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    G.H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande, N. Petrone, A.G. Hammerherg, C. Lee, B. Crawford, W. Oliver, J.W. Kysar, and J. Hone: High-strength chemical-vapor deposited graphene and grain boundaries. Science 340(6136), 1073 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    A.W. Tsen, L. Brown, M.P. Levendorf, F. Ghahari, P.Y. Huang, R.W. Havener, C.S. Ruiz-Vargas, D.A. Muller, P. Kim, and J. Park: Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336(6085), 1143 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    Q.K. Yu, L.A. Jauregui, W. Wu, R. Colby, J.F. Tian, Z.H. Su, H.L. Cao, Z.H. Liu, D. Pandey, D.G. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J.M. Bao, S.S. Pei, and Y.P. Chen: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, and A. Zettl: Grain boundary mapping in polycrystalline graphene. ACS Nano 5(3), 2142 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    C.S. Ruiz-Vargas, H.L.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L. McEuen, D.A. Muller, R.G. Hennig, and J. Park: Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11(6), 2259 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Q.Y. Lin, G. Jing, Y.B. Zhou, Y.F. Wang, J. Meng, Y.Q. Bie, D.P. Yu, and Z.M. Liao: Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano 7(2), 1171 (2013).

    CAS  Article  Google Scholar 

  53. 53.

    A. Zandiatashbar, G.H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C.R. Picu, J. Hone, and N. Koratkar: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Article  CAS  Google Scholar 

  54. 54.

    G. Lopez-Polin, C. Gomez-Navarro, V. Parente, F. Guinea, M.I. Katsnelson, F. Perez-Murano, and J. Gomez-Herrero: Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11(1), 26 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, and A. Jorio: Quantifying ion-induced defects and raman relaxation length in graphene. Carbon 48(5), 1592 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).

    CAS  Article  Google Scholar 

  58. 58.

    K. Liu, C-L. Hsin, D. Fu, J. Suh, S. Tongay, M. Chen, Y. Sun, A. Yan, J. Park, K.M. Yu, W. Guo, A. Zettl, H. Zheng, D.C. Chrzan, and J. Wu: Self-passivation of defects: Effects of high-energy particle irradiation on elastic modulus of multilayer graphene. Adv. Mater. (2015), doi: https://doi.org/10.1002/adma.201501752.

  59. 59.

    A.K. Geim: Graphene: Status and prospects. Science 324(5934), 1530 (2009).

    CAS  Article  Google Scholar 

  60. 60.

    A.K. Geim and I.V. Grigorieva: van der Waals heterostructures. Nature 499(7459), 419 (2013).

    CAS  Article  Google Scholar 

  61. 61.

    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol. 7(11), 699 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    Q.Y. He, Z.Y. Zeng, Z.Y. Yin, H. Li, S.X. Wu, X. Huang, and H. Zhang: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa, and T. Takenobu: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013 (2012).

    CAS  Article  Google Scholar 

  65. 65.

    H.Y. Chang, S.X. Yang, J.H. Lee, L. Tao, W.S. Hwang, D. Jena, N.S. Lu, and D. Akinwande: High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    D. Akinwande, N. Petrone, and J. Hone: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 12 (2014).

    Article  CAS  Google Scholar 

  67. 67.

    S. Bertolazzi, J. Brivio, and A. Kis: Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703 (2011).

    CAS  Article  Google Scholar 

  68. 68.

    A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agrait, and G. Rubio-Bollinger: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772 (2012).

    CAS  Article  Google Scholar 

  69. 69.

    J.L. Feldman: Elastic-constants of 2h-MoS2 and 2h-NbSe2 extracted from measured dispersion curves and linear compressibilities. J. Phys. Chem. Solids 37(12), 1141 (1976).

    CAS  Article  Google Scholar 

  70. 70.

    Y.H. Lee, X.Q. Zhang, W.J. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    K.K. Liu, W.J. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C. Su, C.S. Chang, H. Li, Y.M. Shi, H. Zhang, C.S. Lai, and L.J. Li: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538 (2012).

    CAS  Article  Google Scholar 

  72. 72.

    S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013).

    CAS  Article  Google Scholar 

  73. 73.

    A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554 (2013).

    Article  CAS  Google Scholar 

  74. 74.

    K. Kang, S.E. Xie, L.J. Huang, Y.M. Han, P.Y. Huang, K.F. Mak, C.J. Kim, D. Muller, and J. Park: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656 (2015).

    CAS  Article  Google Scholar 

  75. 75.

    K. Liu, Q.M. Yan, M. Chen, W. Fan, Y.H. Sun, J. Suh, D.Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J.B. Neaton, and J.Q. Wu: Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14(9), 5097 (2014).

    CAS  Article  Google Scholar 

  76. 76.

    C. Filippi, D.J. Singh, and C.J. Umrigar: All-electron local-density and generalized-gradient calculations of the structural-properties of semiconductors. Phys. Rev. B. 50(20), 14947 (1994).

    CAS  Article  Google Scholar 

  77. 77.

    J. Kang, S. Tongay, J. Zhou, J.B. Li, and J.Q. Wu: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102(1), 4 (2013).

    Article  CAS  Google Scholar 

  78. 78.

    W.J. Yu, Z. Li, H.L. Zhou, Y. Chen, Y. Wang, Y. Huang, and X.F. Duan: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12(3), 246 (2013).

    CAS  Article  Google Scholar 

  79. 79.

    W.J. Yu, Y. Liu, H.L. Zhou, A.X. Yin, Z. Li, Y. Huang, and X.F. Duan: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952 (2013).

    CAS  Article  Google Scholar 

  80. 80.

    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, and K.S. Novoselov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311 (2013).

    CAS  Article  Google Scholar 

  81. 81.

    B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R.C. Ashoori: Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340(6139), 1427 (2013).

    CAS  Article  Google Scholar 

  82. 82.

    S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J.B. Li, R. Sinclair, and J.Q. Wu: Tuning interlayer coupling in large-area heterostructures with cvd-grown MoS2 and WS2 monolayers. Nano Lett. 14(6), 3185 (2014).

    CAS  Article  Google Scholar 

  83. 83.

    X.P. Hong, J. Kim, S.F. Shi, Y. Zhang, C.H. Jin, Y.H. Sun, S. Tongay, J.Q. Wu, Y.F. Zhang, and F. Wang: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682 (2014).

    CAS  Article  Google Scholar 

  84. 84.

    Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei, Z. Lin, X.L. Zou, G.L. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135 (2014).

    CAS  Article  Google Scholar 

  85. 85.

    C.M. Huang, S.F. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, and X.D. Xu: Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13(12), 1096 (2014).

    CAS  Article  Google Scholar 

  86. 86.

    K.H. Liu, L.M. Zhang, T. Cao, C.H. Jin, D.A. Qiu, Q. Zhou, A. Zettl, P.D. Yang, S.G. Louie, and F. Wang: Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 6 (2014).

    Google Scholar 

  87. 87.

    P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A.C. Ferrari: The shear mode of multilayer graphene. Nat. Mater. 11(4), 294 (2012).

    CAS  Article  Google Scholar 

  88. 88.

    J.B. Wu, X. Zhang, M. Ijas, W.P. Han, X.F. Qiao, X.L. Li, D.S. Jiang, A.C. Ferrari, and P.H. Tan: Resonant raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 8 (2014).

    Google Scholar 

  89. 89.

    E. Koren, E. Lortscher, C. Rawlings, A.W. Knoll, and U. Duerig: Adhesion and friction in mesoscopic graphite contacts. Science 348(6235), 679 (2015).

    CAS  Article  Google Scholar 

  90. 90.

    H.G. Craighead: Nanoelectromechanical systems. Science 290(5496), 1532 (2000).

    CAS  Article  Google Scholar 

  91. 91.

    J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen: Electromechanical resonators from graphene sheets. Science 315(5811), 490 (2007).

    CAS  Article  Google Scholar 

  92. 92.

    J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z.Q. Wei, P. Sheehan, and B.H. Houston: Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 8(10), 3441 (2008).

    CAS  Article  Google Scholar 

  93. 93.

    C.Y. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4(12), 861 (2009).

    CAS  Article  Google Scholar 

  94. 94.

    J.T. Robinson, M.K. Zalalutdinov, C.E. Junkermeier, J.C. Culbertson, T.L. Reinecke, R. Stine, P.E. Sheehan, B.H. Houston, and E.S. Snow: Structural transformations in chemically modified graphene. Solid State Commun. 152(21), 1990 (2012).

    CAS  Article  Google Scholar 

  95. 95.

    A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339 (2011).

    CAS  Article  Google Scholar 

  96. 96.

    A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H.S.J. van der Zant, G.A. Steele, and W.J. Venstra: Single-layer MoS2 mechanical resonators. Adv. Mater. 25(46), 6719 (2013).

    CAS  Article  Google Scholar 

  97. 97.

    J. Lee, Z.H. Wang, K.L. He, J. Shan, and P.X.L. Feng: High frequency MoS2 nanomechanical resonators. ACS Nano 7(7), 6086 (2013).

    CAS  Article  Google Scholar 

  98. 98.

    L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, and Y.B. Zhang: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

J.W. acknowledges supports by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the NSF Center for Energy Efficient Electronics Science (NSF Award No. ECCS-0939514). K.L. acknowledges the support by “the Recruitment Program of Global Youth Experts (the Thousand Youth Talents Program).”

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kai Liu or Junqiao Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Wu, J. Mechanical properties of two-dimensional materials and heterostructures. Journal of Materials Research 31, 832–844 (2016). https://doi.org/10.1557/jmr.2015.324

Download citation