Skip to main content
Log in

Setting up a nanolab inside a transmission electron microscope for two-dimensional materials research

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, and molybdenum sulfide (MoS2), have attracted considerable interest from the academia and industry because of their extraordinary properties. With the remarkable development of transmission electron microscope (TEM), nanolabs can be established inside the TEM to simulate a real environment by introducing external fields, such as electron irradiation, thermal excitation, electrical field, and mechanical force, into the system. In consequence, besides static structural characterization, in situ TEM can also realize dynamic observation of the evolution in structures and properties of 2D materials. This extension promises an enormous potential for manipulating and engineering 2D materials at the atomic scale with desired structures and properties for future applications. In this study, we review the recent progress of in situ electron microscopy studies of 2D materials, including atomic resolution characterization, in situ growth, nanofabrication, and property characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306 (5696), 666 (2004).

    Article  CAS  Google Scholar 

  2. A.K. Geim: Graphene: Status and prospects. Science 324 (5934), 1530 (2009).

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim: A roadmap for graphene. Nature 490 (7419), 192 (2012).

    Article  CAS  Google Scholar 

  4. W-Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi: Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93, 223103 (2008).

    Article  CAS  Google Scholar 

  5. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang: Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50 (47), 11093 (2011).

    Article  CAS  Google Scholar 

  6. M. Xu, T. Liang, M. Shi, and H. Chen: Graphene-like two-dimensional materials. Chem. Rev. 113 (5), 3766 (2013).

    Article  CAS  Google Scholar 

  7. B. Freitag, S. Kujawa, P.M. Mul, J. Ringnalda, and P.C. Tiemeijer: Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102 (3), 209 (2005).

    Article  CAS  Google Scholar 

  8. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, and K. Urban: Electron microscopy image enhanced. Nature 392 (6678), 768 (1998).

    Article  CAS  Google Scholar 

  9. J.L. Hutchison, J.M. Titchmarsh, D.J. Cockayne, R.C. Doole, C.J. Hetherington, A.I. Kirkland, and H. Sawada: A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103 (1), 7 (2005).

    Article  CAS  Google Scholar 

  10. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C-H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, and A. Zettl: Graphene at the edge: Stability and dynamics. Science 323 (5922), 1705 (2009).

    Article  CAS  Google Scholar 

  11. P. Koskinen, S. Malola, and H. Häkkinen: Evidence for graphene edges beyond zigzag and armchair. Phys. Rev. B. 80, 073401 (2009).

    Article  CAS  Google Scholar 

  12. J.H. Warner, M.H. Ruemmeli, A. Bachmatiuk, and B. Buechner: Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 4 (3), 1299 (2010).

    Article  CAS  Google Scholar 

  13. O. Lehtinen, S. Kurasch, A.V. Krasheninnikov, and U. Kaiser: Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat. Commun. 4, 2098 (2013).

    Article  CAS  Google Scholar 

  14. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, and A. Zettl: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8 (11), 3582 (2008).

    Article  CAS  Google Scholar 

  15. J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, and A.I. Kirkland: Dislocation-driven deformations in graphene. Science 337 (6091), 209 (2012).

    Article  CAS  Google Scholar 

  16. J. Lin, O. Cretu, W. Zhou, K. Suenaga, D. Prasai, K.I. Bolotin, N.T. Cuong, M. Otani, S. Okada, A.R. Lupini, J.C. Idrobo, D. Caudel, A. Burger, N.J. Ghimire, J. Yan, D.G. Mandrus, S.J. Pennycook, and S.T. Pantelides: Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9 (6), 436 (2014).

    Article  CAS  Google Scholar 

  17. X. Liu, T. Xu, X. Wu, Z. Zhang, J. Yu, H. Qiu, J-H. Hong, C-H. Jin, J-X. Li, X-R. Wang, L-T. Sun, and W. Guo: Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013).

    Article  CAS  Google Scholar 

  18. A. Ziegler, H. Graafsma, X. Zhang, and J.W.M. Frenken: In-situ Materials Characterization: Across Spatia and Temporal Scales (Springer, Dordrecht, Netherlands, 2014).

    Book  Google Scholar 

  19. B. Barwick, H.S. Park, O-H. Kwon, J.S. Baskin, and A.H. Zewail: 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322 (5905), 1227 (2008).

    Article  CAS  Google Scholar 

  20. F. Carbone, O-H. Kwon, and A.H. Zewail: Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325 (5937), 181 (2009).

    Article  CAS  Google Scholar 

  21. A.H. Zewail: Four-dimensional electron microscopy. Science 328 (5975), 187 (2010).

    Article  CAS  Google Scholar 

  22. U.J. Lorenz and A.H. Zewail: Observing liquid flow in nanotubes by 4D electron microscopy. Science 344 (6191), 1496 (2014).

    Article  CAS  Google Scholar 

  23. R.M. van der Veen, O.H. Kwon, A. Tissot, A. Hauser, and A.H. Zewail: Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nat. Chem. 5 (5), 395 (2013).

    Article  CAS  Google Scholar 

  24. A.W. Robertson, C.S. Allen, Y.A. Wu, K. He, J. Olivier, J. Neethling, A.I. Kirkland, and J.H. Warner: Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144 (2012).

    Article  CAS  Google Scholar 

  25. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331 (6017), 568 (2011).

    Article  CAS  Google Scholar 

  26. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12 (8), 754 (2013).

    Article  CAS  Google Scholar 

  27. A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elias, C-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urias, J-C. Charlier, H. Terrones, and M. Terrones: Identification of individual and few layers of WS using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).

    Article  CAS  Google Scholar 

  28. A. Bachmatiuk, R.F. Abelin, H.T. Quang, B. Trzebicka, J. Eckert, and M.H. Rummeli: Chemical vapor deposition of twisted bilayer and few-layer MoSe2 over SiOx substrates. Nanotechnology 25 (36), 365603 (2014).

    Article  CAS  Google Scholar 

  29. N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, and A. Zettl: Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).

    Article  CAS  Google Scholar 

  30. C. Jin, F. Lin, K. Suenaga, and S. Iijima: Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).

    Article  CAS  Google Scholar 

  31. K. Davami, M. Shaygan, N. Kheirabi, J. Zhao, D.A. Kovalenko, M.H. Ruemmeli, J. Opitz, G. Cuniberti, J-S. Lee, and M. Meyyappan: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).

    Article  CAS  Google Scholar 

  32. H-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov: Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  CAS  Google Scholar 

  33. T. Bjorkman, S. Kurasch, O. Lehtinen, J. Kotakoski, O.V. Yazyev, A. Srivastava, V. Skakalova, J.H. Smet, U. Kaiser, and A.V. Krasheninnikov: Defects in bilayer silica and graphene: Common trends in diverse hexagonal two-dimensional systems. Sci. Rep. 3, 3482 (2013).

    Article  Google Scholar 

  34. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, and J.C. Meyer: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011).

    Article  CAS  Google Scholar 

  35. A.L. Gibb, N. Alem, J.H. Chen, K.J. Erickson, J. Ciston, A. Gautam, M. Linck, and A. Zettl: Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135 (18), 6758 (2013).

    Article  CAS  Google Scholar 

  36. O. Cretu, Y.C. Lin, and K. Suenaga: Evidence for active atomic defects in monolayer hexagonal boron nitride: A new mechanism of plasticity in two-dimensional materials. Nano Lett. 14 (2), 1064 (2014).

    Article  CAS  Google Scholar 

  37. J.C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9 (7), 2683 (2009).

    Article  CAS  Google Scholar 

  38. H-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov: From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B. 88, 035301 (2013).

    Article  CAS  Google Scholar 

  39. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang: Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article  CAS  Google Scholar 

  40. R. Grantab, V.B. Shenoy, and R.S. Ruoff: Anomalous strength characteristics of Tilt grain boundaries in graphene. Science 330 (6006), 946 (2010).

    Article  CAS  Google Scholar 

  41. P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, and D.A. Muller: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469 (7330), 389 (2011).

    Article  CAS  Google Scholar 

  42. A.W. Tsen, L. Brown, M.P. Levendorf, F. Ghahari, P.Y. Huang, R.W. Havener, C.S. Ruiz-Vargas, D.A. Muller, P. Kim, and J. Park: Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336 (6085), 1143 (2012).

    Article  CAS  Google Scholar 

  43. J.H. Warner, M. Mukai, and A.I. Kirkland: Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano 6 (6), 5680 (2012).

    Article  CAS  Google Scholar 

  44. C. Cong, K. Li, X.X. Zhang, and T. Yu: Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci. Rep. 3, 1195 (2013).

    Article  CAS  Google Scholar 

  45. R.F. Egerton, P. Li, and M. Malac: Radiation damage in the TEM and SEM. Micron 35 (6), 399 (2004).

    Article  CAS  Google Scholar 

  46. F. Banhart: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62 (8), 1181 (1999).

    Article  CAS  Google Scholar 

  47. J.C. Meyer, F. Eder, S. Kurasch, V. Skakalova, J. Kotakoski, H.J. Park, S. Roth, A. Chuvilin, S. Eyhusen, G. Benner, A.V. Krasheninnikov, and U. Kaiser: Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

    Article  CAS  Google Scholar 

  48. A.W. Robertson and J.H. Warner: Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale 5 (10), 4079 (2013).

    Article  CAS  Google Scholar 

  49. J. Kotakoski, C. Mangler, and J.C. Meyer: Imaging atomic-level random walk of a point defect in graphene. Nat. Commun. 5, 3991 (2014).

    Article  CAS  Google Scholar 

  50. J-H. Chen, L. Li, W.G. Cullen, E.D. Williams, and M.S. Fuhrer: Tunable Kondo effect in graphene with defects. Nat. Phys. 7 (7), 535 (2011).

    Article  CAS  Google Scholar 

  51. L. Li, S. Reich, and J. Robertson: Defect energies of graphite: Density-functional calculations. Phys. Rev. B. 72, 184109 (2005).

    Article  CAS  Google Scholar 

  52. C.J. Russo and J.A. Golovchenko: Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl. Acad. Sci. U. S. A. 109 (16), 5953 (2012).

    Article  CAS  Google Scholar 

  53. A.W. Robertson, G.D. Lee, K. He, E. Yoon, A.I. Kirkland, and J.H. Warner: Stability and dynamics of the tetravacancy in graphene. Nano Lett. 14 (3), 1634 (2014).

    Article  CAS  Google Scholar 

  54. M. Hjort and S. Stafstrom: Modeling vacancies in graphite via the Huckel method. Phys. Rev. B. 61 (20), 14089 (2000).

    Article  CAS  Google Scholar 

  55. Y. Kim, J. Ihm, E. Yoon, and G.D. Lee: Dynamics and stability of divacancy defects in graphene. Phys. Rev. B. 84, 075445 (2011).

    Article  CAS  Google Scholar 

  56. A.W. Robertson, K. He, A.I. Kirkland, and J.H. Warner: Inflating graphene with atomic scale blisters. Nano Lett. 14 (2), 908 (2014).

    Article  CAS  Google Scholar 

  57. A.W. Robertson, B. Montanari, K. He, J. Kim, C.S. Allen, Y.A. Wu, J. Olivier, J. Neethling, N. Harrison, A.I. Kirkland, and J.H. Warner: Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13 (4), 1468 (2013).

    Article  CAS  Google Scholar 

  58. H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschloegl, W. Yang, and X.X. Zhang: Doping monolayer graphene with single atom substitutions. Nano Lett. 12 (1), 141 (2012).

    Article  CAS  Google Scholar 

  59. Y. Liu and B.I. Yakobson: Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10 (6), 2178 (2010).

    Article  CAS  Google Scholar 

  60. S. Malola, H. Häkkinen, and P. Koskinen: Structural, chemical, and dynamical trends in graphene grain boundaries. Phys. Rev. B. 81, 165447 (2010).

    Article  CAS  Google Scholar 

  61. O.V. Yazyev and S.G. Louie: Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B. 81, 195420 (2010).

    Article  CAS  Google Scholar 

  62. O.V. Yazyev and S.G. Louie: Electronic transport in polycrystalline graphene. Nat. Mater. 9 (10), 806 (2010).

    Article  CAS  Google Scholar 

  63. J. An, E. Voelkl, J.W. Suk, X. Li, C.W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R.S. Ruoff: Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene. ACS Nano 5 (4), 2433 (2011).

    Article  CAS  Google Scholar 

  64. K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, and A. Zettl: Grain boundary mapping in polycrystalline graphene. ACS Nano. 5 (3), 2142 (2011).

    Article  CAS  Google Scholar 

  65. A.W. Robertson, A. Bachmatiuk, Y.A. Wu, F. Schaeffel, B. Rellinghaus, B. Buechner, M.H. Ruemmeli, and J.H. Warner: Atomic structure of interconnected few-layer graphene domains. ACS Nano. 5 (8), 6610 (2011).

    Article  CAS  Google Scholar 

  66. S. Kurasch, J. Kotakoski, O. Lehtinen, V. Skákalová, J. Smet, C.E. Krill, A.V. Krasheninnikov, and U. Kaiser: Atom-by-atom observation of grain boundary migration in graphene. Nano Lett. 12 (6), 3168 (2012).

    Article  CAS  Google Scholar 

  67. D.J. Klein: Graphitic polymer strips with edge states. Chem. Phys. Lett. 217 (3), 261 (1994).

    Article  Google Scholar 

  68. J. Kotakoski, D. Santos-Cottin, and A.V. Krasheninnikov: Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects. ACS Nano 6 (1), 671 (2012).

    Article  CAS  Google Scholar 

  69. P. Koskinen, S. Malola, and H. Häkkinen: Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008).

    Article  CAS  Google Scholar 

  70. K. Kim, S. Coh, C. Kisielowski, M.F. Crommie, S.G. Louie, M.L. Cohen, and A. Zettl: Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013).

    Article  CAS  Google Scholar 

  71. J.H. Warner, M.H. Ruemmeli, L. Ge, T. Gemming, B. Montanari, N.M. Harrison, B. Buechner, and G.A.D. Briggs: Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 4 (8), 500 (2009).

    Article  CAS  Google Scholar 

  72. T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B. 62 (24), R16349 (2000).

    Article  CAS  Google Scholar 

  73. K. He, G.D. Lee, A.W. Robertson, E. Yoon, and J.H. Warner: Hydrogen-free graphene edges. Nat. Commun. 5, 3040 (2014).

    Article  CAS  Google Scholar 

  74. Z. Liu, K. Suenaga, P.J.F. Harris, and S. Iijima: Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009).

    Article  CAS  Google Scholar 

  75. B. Westenfelder, J.C. Meyer, J. Biskupek, S. Kurasch, F. Scholz, C.E. Krill, III, and U. Kaiser: Transformations of carbon adsorbates on graphene substrates under extreme heat. Nano Lett. 11 (12), 5123 (2011).

    Article  CAS  Google Scholar 

  76. K. Watanabe, T. Taniguchi, and H. Kanda: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3 (6), 404 (2004).

    Article  CAS  Google Scholar 

  77. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, and S.J. Pennycook: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464 (7288), 571 (2010).

    Article  CAS  Google Scholar 

  78. A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, and C. Colliex: Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. B. 75, 245402 (2007).

    Article  CAS  Google Scholar 

  79. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, and J. van den Brink: Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B. 76, 073103 (2007).

    Article  CAS  Google Scholar 

  80. J. Brivio, D.T.L. Alexander, and A. Kis: Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11 (12), 5148 (2011).

    Article  CAS  Google Scholar 

  81. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  82. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10 (4), 1271 (2010).

    Article  CAS  Google Scholar 

  83. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, and J.C. Idrobo: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13 (6), 2615 (2013).

    Article  CAS  Google Scholar 

  84. G.D. Lee, C.Z. Wang, E. Yoon, N.M. Hwang, D.Y. Kim, and K.M. Ho: Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 95, 205501 (2005).

    Article  CAS  Google Scholar 

  85. J.A. Rodriguez-Manzo, C. Pham-Huu, and F. Banhart: Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano. 5 (2), 1529 (2011).

    Article  CAS  Google Scholar 

  86. L. He, T. Xu, J. Sun, K. Yin, X. Xie, L. Ding, H. Xiu, and L. Sun: Investment casting of carbon tubular structures. Carbon 50 (8), 2845 (2012).

    Article  CAS  Google Scholar 

  87. A. Barreiro, F. Börrnert, S.M. Avdoshenko, B. Rellinghaus, G. Cuniberti, M.H. Rümmeli, and L.M.K. Vandersypen: Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. Sci. Rep. 3, 1115 (2013).

    Article  CAS  Google Scholar 

  88. Z. Liu, Y.C. Lin, C.C. Lu, C.H. Yeh, P.W. Chiu, S. Iijima, and K. Suenaga: In-situ observation of step-edge in-plane growth of graphene in a STEM. Nat. Commun. 5, 4055 (2014).

    Article  CAS  Google Scholar 

  89. J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov, J. Eckert, and M.H. Ruemmeli: Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343 (6176), 1228 (2014).

    Article  CAS  Google Scholar 

  90. F.B. Romdhane, T. Bjoerkman, J.A. Rodriguez-Manzo, O. Cretu, A.V. Krasheninnikov, and F. Banhart: In situ growth of cellular two-dimensional silicon oxide on metal substrates. ACS Nano 7 (6), 5175 (2013).

    Article  CAS  Google Scholar 

  91. F. Ben Romdhane, T. Björkman, A.V. Krasheninnikov, and F. Banhart: Solid-state growth of one- and two-dimensional silica structures on metal surfaces. J. Phys. Chem. C 118 (36), 21001 (2014).

    Article  CAS  Google Scholar 

  92. Y. Gan, L. Sun, and F. Banhart: One- and two-dimensional diffusion of metal atoms in graphene. Small 4 (5), 587 (2008).

    Article  CAS  Google Scholar 

  93. H. Wang, K. Li, Y. Cheng, Q. Wang, Y. Yao, U. Schwingenschlogl, X. Zhang, and W. Yang: Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy. Nanoscale 4 (9), 2920 (2012).

    Article  CAS  Google Scholar 

  94. J.A. Rodriguez-Manzo, O. Cretu, and F. Banhart: Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano. 4 (6), 3422 (2010).

    Article  CAS  Google Scholar 

  95. O. Cretu, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, L. Sun, R.M. Nieminen, and F. Banhart: Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010).

    Article  CAS  Google Scholar 

  96. Z. He, K. He, A.W. Robertson, A.I. Kirkland, D. Kim, J. Ihm, E. Yoon, G-D. Lee, and J.H. Warner: Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14 (7), 3766 (2014).

    Article  CAS  Google Scholar 

  97. W. Zhou, M.D. Kapetanakis, M.P. Prange, S.T. Pantelides, S.J. Pennycook, and J-C. Idrobo: Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 109, 206803 (2012).

    Article  CAS  Google Scholar 

  98. J. Lee, W. Zhou, S.J. Pennycook, J.C. Idrobo, and S.T. Pantelides: Direct visualization of reversible dynamics in a Si(6) cluster embedded in a graphene pore. Nat. Commun. 4, 1650 (2013).

    Article  CAS  Google Scholar 

  99. A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykko, and R.M. Nieminen: Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009).

    Article  CAS  Google Scholar 

  100. W.L. Wang, E.J.G. Santos, B. Jiang, E.D. Cubuk, C. Ophus, A. Centeno, A. Pesquera, A. Zurutuza, J. Ciston, R. Westervelt, and E. Kaxiras: Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 14 (2), 450 (2014).

    Article  CAS  Google Scholar 

  101. X. Wei, M-S. Wang, Y. Bando, and D. Golberg: Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano. 5 (4), 2916 (2011).

    Article  CAS  Google Scholar 

  102. A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, and C. Dekker: Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2 (8), 537 (2003).

    Article  CAS  Google Scholar 

  103. T. Xu, K. Yin, X. Xie, L. He, B. Wang, and L. Sun: Size-dependent evolution of graphene nanopores under thermal excitation. Small 8 (22), 3422 (2012).

    Article  CAS  Google Scholar 

  104. M.J. Kim, B. McNally, K. Murata, and A. Meller: Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18 (20), 205302 (2007).

    Article  CAS  Google Scholar 

  105. T. Xu, X. Xie, K. Yin, J. Sun, L. He, and L. Sun: Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small 10 (9), 1724 (2014).

    Article  CAS  Google Scholar 

  106. S. Wu, F. Cao, H. Zheng, H. Sheng, C. Liu, Y. Liu, D. Zhao, and J. Wang: Fabrication of faceted nanopores in magnesium. Appl. Phys. Lett. 103 (24), 243101 (2013).

    Article  CAS  Google Scholar 

  107. H. Zheng, Y. Liu, F. Cao, S. Wu, S. Jia, A. Cao, D. Zhao, and J. Wang: Electron beam-assisted healing of nanopores in magnesium alloys. Sci. Rep. 3, 1920 (2013).

    Article  Google Scholar 

  108. B. Song, G.F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen: Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11 (6), 2247 (2011).

    Article  CAS  Google Scholar 

  109. A.V. Krasheninnikov and F. Banhart: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6 (10), 723 (2007).

    Article  CAS  Google Scholar 

  110. A. Chuvilin, J.C. Meyer, G. Algara-Siller, and U. Kaiser: From graphene constrictions to single carbon chains. New J. Phys. 11, 083109 (2009).

    Article  CAS  Google Scholar 

  111. C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima: Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    Article  CAS  Google Scholar 

  112. M.D. Fischbein and M. Drndić: Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93 (11), 113107 (2008).

    Article  CAS  Google Scholar 

  113. X. Jia, M. Hofmann, V. Meunier, B.G. Sumpter, J. Campos-Delgado, J.M. Romo-Herrera, H. Son, Y-P. Hsieh, A. Reina, J. Kong, M. Terrones, and M.S. Dresselhaus: Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323 (5922), 1701 (2009).

    Article  CAS  Google Scholar 

  114. K.A. Ritter and J.W. Lyding: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8 (3), 235 (2009).

    Article  CAS  Google Scholar 

  115. O. Cretu, A.R. Botello-Mendez, I. Janowska, P-H. Cuong, J-C. Charlier, and F. Banhart: Electrical transport measured in atomic carbon chains. Nano Lett. 13 (8), 3487 (2013).

    Article  CAS  Google Scholar 

  116. J.H. Warner, Y. Fan, A.W. Robertson, K. He, E. Yoon, and G.D. Lee: Rippling graphene at the nanoscale through dislocation addition. Nano Lett. 13 (10), 4937 (2013).

    Article  CAS  Google Scholar 

  117. J. Chen, T. Shi, T. Cai, T. Xu, L. Sun, X. Wu, and D. Yu: Self healing of defected graphene. Appl. Phys. Lett. 102 (10), 103107 (2013).

    Article  CAS  Google Scholar 

  118. X. He, T. Xu, X. Xu, Y. Zeng, J. Xu, L. Sun, C. Wang, H. Xing, B. Wu, A. Lu, D. Liu, X. Chen, and J. Chu: In-situ atom scale visualization of domain wall dynamics in VO2 insulator-metal phase transition. Sci. Rep. 4, 6544 (2014).

    Article  CAS  Google Scholar 

  119. Y-C. Lin, D.O. Dumcenco, Y-S. Huang, and K. Suenaga: Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9 (5), 391 (2014).

    Article  CAS  Google Scholar 

  120. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla: Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano. 6 (8), 7311 (2012).

    Article  CAS  Google Scholar 

  121. A. Barreiro, F. Borrnert, M.H. Rummeli, B. Buchner, and L.M. Vandersypen: Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 12 (4), 1873 (2012).

    Article  CAS  Google Scholar 

  122. F. Borrnert, A. Barreiro, D. Wolf, M.I. Katsnelson, B. Buchner, L.M.K. Vandersypen, and M.H. Rummeli: Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 12 (9), 4455 (2012).

    Article  CAS  Google Scholar 

  123. J.Y. Huang, F. Ding, B.I. Yakobson, P. Lu, L. Qi, and J. Li: In-situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. U. S. A. 106 (25), 10103 (2009).

    Article  CAS  Google Scholar 

  124. A.L. Torre, A. Botello-Mendez, W. Baaziz, J.C. Charlier, and F. Banhart: Strain-induced metal-semiconductor transition observed in atomic carbon chains. Nat. Commun. 6, 6636 (2015).

    Article  CAS  Google Scholar 

  125. Y. Lu, C.A. Merchant, M. Drndic, and A.T.C. Johnson: In-situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 11 (12), 5184 (2011).

    Article  CAS  Google Scholar 

  126. M.S. Wang, D. Golberg, and Y. Bando: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22 (36), 4071 (2010).

    Article  CAS  Google Scholar 

  127. H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, and S.X. Mao: Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1, 144 (2010).

    Article  CAS  Google Scholar 

  128. J.W. Wang, S. Narayanan, J.Y. Huang, Z. Zhang, T. Zhu, and S.X. Mao: Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat. Commun. 4, 2340 (2013).

    Article  CAS  Google Scholar 

  129. J. Sun, L. He, Y.C. Lo, T. Xu, H. Bi, L. Sun, Z. Zhang, S.X. Mao, and J. Li: Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13 (11), 1007 (2014).

    Article  CAS  Google Scholar 

  130. X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Yuan, and Z.L. Wang: Low-temperature in-situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7 (2), 452 (2007).

    Article  CAS  Google Scholar 

  131. K. Zheng, X.D. Han, L.H. Wang, Y.F. Zhang, Y.H. Yue, Y. Qin, X.N. Zhang, and Z. Zhang: Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9 (6), 2471 (2009).

    Article  CAS  Google Scholar 

  132. K. Zheng, C. Wang, Y.Q. Cheng, Y. Yue, X. Han, Z. Zhang, Z. Shan, S.X. Mao, M. Ye, Y. Yin, and E. Ma: Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010).

    Article  CAS  Google Scholar 

  133. L. Wang, P. Liu, P. Guan, M. Yang, J. Sun, Y. Cheng, A. Hirata, Z. Zhang, E. Ma, M. Chen, and X. Han: In-situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013).

    Article  Google Scholar 

  134. D-M. Tang, D.G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koskinen, P.M. Ajayan, B.I. Yakobson, P.B. Sorokin, J. Lou, and D. Golberg: Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 5, 3631 (2014).

    Article  Google Scholar 

  135. X. Wei, S. Xiao, F. Li, D.M. Tang, Q. Chen, Y. Bando, and D. Golberg: Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett. 15 (1), 689 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 51420105003, 61274114 and 113279028), the Natural Science Foundation and Qing Lan Project of Jiangsu Province (Nos. BK2011592, BK2012024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litao Sun.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Sun, L. Setting up a nanolab inside a transmission electron microscope for two-dimensional materials research. Journal of Materials Research 30, 3153–3176 (2015). https://doi.org/10.1557/jmr.2015.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.304

Navigation