Effect of alloy substituents on soft magnetic properties and economics of Fe-based and Co-based alloys

Abstract

Amorphous and nanocrystalline soft magnetic alloys have garnered interests in academia and industry due to their potentials for applications, such as power transformers, electric motors, and sensors. To achieve good glass formability, thermal stability, and prevent grain overgrowth, elements such as B, Nb, Ta, and Hf are used in many soft magnetic systems. However, the high price of these precursors results in expensive soft magnetic alloys. Herein, we report on substituting Ta and Hf with TaC and HfC, respectively, to significantly reduce the cost of Fe-based FINEMET and Co-based HTX005 alloys. Soft magnetic properties of these alloys are studied. The effect of thermal annealing and strain annealing on TaC and HfC substituted alloys are also investigated. Lastly, we discuss the cost analysis on these alloys. Using the synthesis route presented here, a cost reduction of up to 74% can be achieved.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.E. McHenry, M.A. Willard, and D.E. Laughlin: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    A.M. Leary, P.R. Ohodnicki, and M.E. McHenry: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64 (7), 772 (2012).

    Article  Google Scholar 

  3. 3.

    M.A. Willard and M. Daniil: Chapter Four—Nanocrystalline soft magnetic alloys two decades of progress. Handb. Magn. Mater. 21, 173 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    J.M.D. Coey: Magnetic materials. J. Alloys Compd. 326 (1), 2 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    K.H.J. Buschow: Handbook of Magnetic Materials, Vol. 15 (Elsevier, Amsterdam, Netherlands, 2003).

    Google Scholar 

  6. 6.

    M.A. Khan, Y. Chen, and P. Pillay: Application of soft magnetic composites to PM wind generator design. IEEE Power Eng. Soc. Gen. Meet. (2006).

    Google Scholar 

  7. 7.

    J. Emsley: Nature’s Building Blocks: An A-Z Guide to the Elements (Oxford University Press, Oxford, UK, 2003); p. 421.

    Google Scholar 

  8. 8.

    M.E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, A. Hsiao, V.R.V. Ramanan, and D.E. Laughlin: The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials. Scr. Mater. 48, 881 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    H. Iwanabe, M.E. McHenry, B. Lu, and D.E. Laughlin: Thermal stability of the nanocrystalline Fe-Co-Hf-B-Cu alloy. J. Appl. Phys. 85 (8), 4424 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    M.E. McHenry, M.A. Willard, H. Iwanabe, R.A. Sutton, Z. Turgut, A. Hsiao, and D.E. Laughlin: Nanocrystalline materials for high temperature soft magnetic applications: A current prospectus. Bull. Mater. Sci. 22, 495 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    M.S. Lucas, W.C. Bourne, A.O. Sheets, L. Brunke, M.D. Alexander, J.M. Shank, E. Michel, S.L. Semiatin, J. Horwath, and Z. Turgut: Nanocrystalline Hf and Ta containing FeCo based alloys for high frequency applications. Mater. Sci. Eng., B 176, 1079 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    M.E. McHenry and D.E. Laughlin: Nano-scale materials development for future magnetic applications. Acta Mater. 48 (1), 223 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    M. Kopcewicz, A. Grabias, J. Latuch, and M. Kowalczyk: Soft magnetic amorphous Fe–Zr–Si(Cu) boron-free alloys. Mater. Chem. Phys. 126 (3), 669 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    C.T. Liu and Z.P. Lu: Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics 13, 415 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    M. Kopcewicz, A. Grabias, and J. Latuch: Magnetic properties of Fe80−xCoxZr7Si13 (x=0–30) amorphous alloys. J. Appl. Phys. 110, 103907 (2011).

    Article  CAS  Google Scholar 

  16. 16.

    J. Long, D.E. Laughlin, and M.E. McHenry: Structural and soft magnetic properties of a new nanocrystalline Fe-based and B-free alloy. J. Appl. Phys. 103, 07E708 (2008).

    Article  CAS  Google Scholar 

  17. 17.

    H. Okumura, D.E. Laughlin, and M.E. McHenry: Magnetic and structural properties and crystallization behavior of Si-rich FINEMET materials. J. Magn. Magn. Mater. 267, 347 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    K. Zabransky and Y. Jiraskova: Physical and chemical properties of FINEMET-type amorphous alloys. Acta Phys. Pol., A 113 (1), 123 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    V.R.V. Ramanan and G.E. Fish: Crystallization kinetics in Fe−B−Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).

    CAS  Article  Google Scholar 

  20. 20.

    I.W. Donald and H.A. Davies: The influence of transition metal substitutions on the formation, stability and hardness of some Fe- and Ni-based metallic glasses. Philos. Mag. A 42 (3), 277 (1980).

    CAS  Article  Google Scholar 

  21. 21.

    M. Kurniawan, V. Keylin, and M.E. McHenry: Alloy substituents for cost reduction in soft magnetic materials. J. Mater. Res. 30 (8), 1072–1077 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    S.L. Chen, W. Liu, D.Y. Geng, X.G. Zhao, and Z.D. Zhang: Decomposition of B4C and magnetic properties of Nd–Fe–(B, C) alloys synthesized by mechanical alloying. J. Alloys Compd. 415, 271 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Y.C. Sui, Z.D. Zhang, Q.F. Xiao, W. Liu, X.G. Zhao, T. Zhao, and Y.C. Chuang: Nd - Fe - (C, B) permanent magnets made by mechanical alloying and subsequent annealing. J. Phys.: Condens. Matter 8, 11231 (1996).

    CAS  Google Scholar 

  24. 24.

    Y.C. Sui, Z.D. Zhang, Q.F. Xiao, W. Liu, T. Zhao, X.G. Zhao, and Y.C. Chuang: Structure, phase transformation and magnetic properties of Nd–Fe–C alloys made by mechanical alloying and subsequent annealing. J. Alloys Compd. 267, 215 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    X.C. Kou, X.K. Sun, Y.C. Chuang, R. Grossinger, and H.R. Kirchmayr: Structure and magnetic properties of R2Fe14B1−xCx compounds (R = Y, Nd). J. Magn. Magn. Mater. 80, 31 (1989).

    CAS  Article  Google Scholar 

  26. 26.

    C.Y. Um and M.E. McHenry: Magnetic properties of Co-substituted Fe-Nb-Ta-Mo-B amorphous alloys. IEEE Trans. Magn. 40 (4), 2724 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    https://doi.org/www.metalprices.com.

  28. 28.

    https://doi.org/www.metal-pages.com.

  29. 29.

    B.H. Kear, B.C. Giessen, and M. Cohen: Rapidly Solidified Amorphous and Crystalline Alloys. (Cambridge University Press, New York, NY, 1982).

    Google Scholar 

  30. 30.

    H.A. Davies, S. Steed, and H. Warlimont: Rapidly Quenched Metals, Vol. 1 (Elsevier, Amsterdam, Netherlands, 1985).

    Google Scholar 

  31. 31.

    G.E. Fish: Research and development opportunities for rapidly solidified soft magnetic materials. Mater. Sci. Eng., B 3 (4), 457 (1989).

    Article  Google Scholar 

  32. 32.

    https://doi.org/www.alibaba.com.

  33. 33.

    https://doi.org/www.ferro-alloys.com.

  34. 34.

    C.Y. Um, F. Johnson, M. Simone, J. Barrow, and M.E. McHenry: Effect of crystal fraction on hardness in FINEMET and NANOPERM nanocomposite alloys. J. Appl. Phys. 97, 10F504 (2005).

    Article  CAS  Google Scholar 

  35. 35.

    A. Hsiao, M.E. McHenry, M. Tamoria, and V.G. Harris: Magnetic properties and crystallization kinetics of a Mn-doped FINEMET precursor amorphous alloy. IEEE Trans. Magn. 37, 2236 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    B. Butvinova, P. Butvin, E. Illekova, P. Svec, G. Vlasak, D. Janickovic, and M. Kadlecikova: Impact of phosphorus for boron substitution on magnetic properties of magnetostrictive FINEMETS. Acta Electron. 13, 78 (2013).

    Google Scholar 

  37. 37.

    L.K. Varga, E. Bakos, E. Kisdi-Koszd, E. Zsoldos, and L.F. Kiss: Time and temperature dependence of nanocrystalline structure formation in a Finemet-type amorphous alloy. J. Magn. Magn. Mater. 133, 280 (1994).

    CAS  Article  Google Scholar 

  38. 38.

    D.T.H. Gam, N.D. The, N.H. Hai, N. Chau, N.Q. Hoa, and Md.S. Mahmud: Investigation of the nanocrystallization process and the magnetic properties of Finemet-like Fe73.5Si17.5B5Nb3Cu1 ribbons. J. Korean Phys. Soc. 52 (5), 1423 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    A. Talaat, M. Ipatov, V. Zhukova, J.M. Blanco, M. Churyukanova, S. Kaloshkin, and A. Zhukov: Giant magneto-impedance effect in thin Finemet nanocrystalline microwires. Phys. Status Solidi C 11 (5), 1120 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Y. Yoshizawa and K. Yamauchi: Effects of magnetic field annealing on magnetic properties in ultrafine crystalline Fe-Cu-Nb-Si-B alloys. IEEE Trans. Magn. 25 (5), 3324 (1989).

    CAS  Article  Google Scholar 

  41. 41.

    S. Nakajimaa, S. Arakawaa, Y. Yamashitab, and M. Shiho: Fe-based nanocrystalline FINEMET cores for induction accelerators. Nucl. Instrum. Methods Phys. Res., Sect. A 331 (1), 318 (1993).

    Article  Google Scholar 

  42. 42.

    Y. Yoshizawa and K. Yamauchi: Fe-based soft magnetic alloys composed of ultrafine grain structure. Mater. Trans., JIM 31 (4), 307 (1990).

    Article  Google Scholar 

  43. 43.

    F.M.F. Rhen and S. Roy: Electrodeposited CoNiFeP soft-magnetic films for high frequency applications. IEEE Trans. Magn. 44 (11), 3917 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    A.M. Leary, P.R. Ohodnicki, M.E. Mchenry, V. Keylin, J. Huth, and S.J. Kernion: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. US Patent 20140338793, 2014.

  45. 45.

    J.M. Silveyra, A.M. Leary, V. DeGeorge, S. Simizu, and M.E. McHenry: High-speed electric motors based on high performance novel soft magnets. J. Appl. Phys. 115, 17A319 (2014).

    Article  CAS  Google Scholar 

  46. 46.

    P.R. Ohodnicki, Y.L. Qina, M.E. McHenry, D.E. Laughlin, and V. Keylin: Transmission electron microscopy study of large field induced anisotropy (Co1−xFex)89Zr7B4 nanocomposite ribbons with dilute Fe-contents. J. Magn. Magn. Mater. 322 (3), 315 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    P.R. Ohodnicki, J. Long, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth: Composition dependence of field induced anisotropy in ferromagnetic (Co,Fe)89Zr7B4 and (Co,Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).

    Article  CAS  Google Scholar 

  48. 48.

    A. Chaturvedi, N. Laurita, A. Leary, M.H. Phan, M.E. McHenry, and H. Srikanth: Giant magnetoimpedance and field sensitivity in amorphous and nanocrystalline (Co1−xFex)89Zr7B4 (x = 0, 0.025, 0.05, 0.1) ribbons. J. Appl. Phys. 109, 07B508 (2011).

    Article  CAS  Google Scholar 

  49. 49.

    S.J. Kernion, P.R. Ohodnicki, J. Grossmann, A. Leary, S. Shen, V. Keylin, J.F. Huth, J. Horwath, M.S. Lucas, and M.E. McHenry: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    N. Iturriza, M. Nazmunnahar, L. Dominguez, J. González, and J.J. del Val: Effect of the current annealing (without and with tensile stress) on the soft magnetic behaviour of Fe73.5-x(Co0.5Ni0.5)xSi13.5B9Nb3Cu1 alloy ribbons (x = 2.5, 5 and 10). J. Nanosci. Nanotechnol. 12 (6), 5071 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    T. Kanada, Y. Kido, A. Kutsukake, T. Ikeda, and M. Enokizono: Magnetic properties of soft magnetic materials under tensile and compressive stress. Przegl. Elektrotech. (Electr. Rev.) 87 (9b), 93 (2011).

    Google Scholar 

  52. 52.

    A. Benchabi, F. Alves, R. Barrué, J.C. Faugières, and J.F. Rialland: Magnetic properties and domain structures in stress-annealed FeZrB-(Cu)-(Nb) nanocrystalline ribbons. Eur. Phys. J. Appl. Phys. 15, 173 (2001).

    CAS  Article  Google Scholar 

  53. 53.

    Z. Turgut, M.Q. Huang, J.C. Horwath, R. Hinde, J. Kubicki, and R.T. Fingers: Effect of tensile stress and texture on magnetic properties of FeCo laminates. IEEE Trans. Magn. 40 (4), 2742 (2004).

    Article  Google Scholar 

  54. 54.

    G. Herzer, V. Budinsky, and C. Polak: Magnetic properties of FeCuNbSiB nanocrystallized by flash annealing under high tensile stress. Phys. Status Solidi B 248 (10), 2382 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    M. Kurniawan, R.K. Roy, A.K. Panda, D.W. Greve, P. Ohodnicki, and M.E. McHenry: Temperature-dependent giant magnetoimpedance effect in amorphous soft magnets. J. Electron. Mater. 43 (12), 4576 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    M. Kurniawan, R.K. Roy, A.K. Panda, D.W. Greve, P.R. Ohodnicki, Jr., and M.E. McHenry: Interplay of stress, temperature, and giant magnetoimpedance in amorphous soft magnets. Appl. Phys. Lett. 105, 222407 (2014).

    Article  CAS  Google Scholar 

  57. 57.

    A.G. Arribas, J. Gutiérrez, G.V. Kurlyandskaya, J.M. Barandiarán, A. Svalov, E. Fernández, A. Lasheras, D. de Cos, and I.B. Imaz: Sensor applications of soft magnetic materials based on magneto-impedance, magneto-elastic resonance and magneto-electricity. Sensors 14, 7602 (2014).

    Article  CAS  Google Scholar 

  58. 58.

    B. Slusarek and K. Zakrzewski: Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature. Przegl. Elektrotech. (Electr. Rev.) 88 (7b), 123 (2012).

    Google Scholar 

  59. 59.

    M.E. Wieser, N. Holden, T.B. Coplen, J.K. Bohlke, M. Berglund, W.A. Brand, P. De Bievre, M. Groning, R.D. Loss, J. Meija, T. Hirata, T. Prohaska, R. Schoenberg, G. O’Connor, T. Walczyk, S. Yoneda, and X.K. Zhu: Atomic weights of the elements (IUPAC technical report). Pure Appl. Chem. (IUPAC) 85 (5), 1047 (2011).

    Article  CAS  Google Scholar 

  60. 60.

    H.J. Emeléus: Advances in Inorganic Chemistry and Radiochemistry, Vol. 11 (1968); p. 169.

    Google Scholar 

  61. 61.

    S. Guicciardi, L. Silvestroni, G. Pezzotti, and D. Sciti: Depth-sensing indentation hardness characterization of HfC-based composites. Adv. Eng. Mater. 9 (5), 389 (2007).

    CAS  Article  Google Scholar 

  62. 62.

    V. Domnich, S. Reynaud, R.A. Haber, and M. Chowalla: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 94 (11), 3605 (2011).

    CAS  Article  Google Scholar 

  63. 63.

    F. Thevenot: A review on boron carbide. Key Eng. Mater. 56, 59 (1991).

    Article  Google Scholar 

  64. 64.

    K. Niihara, A. Nakahira, and T. Hirai: The effect of stoichiometry on mechanical properties of boron carbide. J. Am. Ceram. Soc. 67 (1), C13 (1984).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

M. E. M and M. K acknowledge the support from the Army Research Laboratory (Contract Number: W911NF-14-1-0184) and M. E. M acknowledges the support from the Wright Patterson Air Force (Contract Number: FA8650-12-D-2225). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Kurniawan.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurniawan, M., Keylin, V. & McHenry, M.E. Effect of alloy substituents on soft magnetic properties and economics of Fe-based and Co-based alloys. Journal of Materials Research 30, 2231–2237 (2015). https://doi.org/10.1557/jmr.2015.197

Download citation