Synthesis of photoactive ZnSnP2 semiconductor nanowires


Single-phase crystalline ZnSnP2 nanowires have been prepared via simple chemical vapor deposition method using powdered Zn and SnP3 as the precursors in a custom-built tube furnace reactor. The sublimed precursors were allowed to react with thermally evaporated Sn nanoparticles to yield ZnSnP2 nanowire films over areas of 40 mm2. The cumulative observations suggest that the Sn nanoparticles served both as the growth seed and main contributor of Sn. Prolonged growth time favored formation of Zn3P2 nanowires when the Sn supply was exhausted. For optimal growth conditions, surface and bulk elemental analyses showed homogenous elemental distribution of Zn, Sn, and P, with chemical composition close to 1:1:2 stoichiometry. Powder x-ray diffraction data and Raman scattering of the nanowire films along with single-nanowire analysis using high-resolution transmission electron microscopy indicated that the as-prepared ZnSnP2 nanowires possessed a sphalerite crystal structure, as opposed to the antisite defect-free chalcopyrite structure. Photoelectrochemical measurements in aqueous electrolyte showed that the as-prepared ZnSnP2 nanowires are capable of sustaining stable cathodic photoresponse under white light illumination. Overall, this study presented a benign and straightforward approach to prepare single-phase Zn-based phosphide nanowires suitable for energy conversion applications.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    S. Hu, C-Y. Chi, K.T. Fountaine, M. Yao, H.A. Atwater, P.D. Dapkus, N.S. Lewis, and C. Zhou: Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci. 6 (6), 1879 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    J. Sun, C. Liu, and P. Yang: Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133, 19306 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    M.J. Price and S. Maldonado: Macroporous n-GaP in nonaqueous regenerative photoelectrochemical cells. J. Phys. Chem. C 113 (28), 11988 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, and M.T. Borgstrom: InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339 (6123), 1057 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    M. Woodhouse, A. Goodrich, R. Margolis, T.L. James, M. Lokanc, and R. Eggert: Supply-chain dynamics of tellurium, indium, and gallium within the context of PV manufacturing costs. IEEE J. Photovoltaics 3 (2), 833 (2013).

    Article  Google Scholar 

  6. 6.

    N.S. Lewis and D.G. Nocera: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103 (43), 15729 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    S.M. Collins, J.M. Hankett, A.I. Carim, and S. Maldonado: Preparation of photoactive ZnGeP2 nanowire films. J. Mater. Chem. 22 (14), 6613 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    M. van Schilfgaarde, T.J. Coutts, N. Newman, and T. Peshek: Thin film tandem photovoltaic cell from II-IV-V chalcopyrites. Appl. Phys. Lett. 96 (14), 143503 (2010).

    Article  CAS  Google Scholar 

  9. 9.

    T. Yokoyama, F. Oba, A. Seko, H. Hayashi, Y. Nose, and I. Tanaka: Theoretical photovoltaic conversion efficiencies of ZnSnP2, CdSnP2, and Zn1-xCdxSnP2 alloys. Appl. Phys. Express 6 (6), 061201 (2013).

    Article  CAS  Google Scholar 

  10. 10.

    F.M. Gashimzade: Band structure of AII-BIV-C2V-type semiconductor compounds having the chalcopyrite structure. Sov. Phys. Solid State 5 (4), 875 (1963).

    Google Scholar 

  11. 11.

    J.L. Shay and J.H. Wernick: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, Elmsford, NY, 1975).

    Google Scholar 

  12. 12.

    P. St-Jean, G.A. Seryogin, and S. Francoeur: Band gap of sphalerite and chalcopyrite phases of epitaxial ZnSnP2. Appl. Phys. Lett. 96 (23), 231913 (2010).

    Article  CAS  Google Scholar 

  13. 13.

    G.A. Davis and C.M. Wolfe: Liquid phase epitaxial growth of ZnSnP2 on GaAs. J. Electrochem. Soc. 130 (6), 1408 (1983).

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Ryan, M.W. Peterson, D.L. Williamson, J.S. Frey, G.E. Maciel, and B.A. Parkinson: Metal site disorder in zinc tin phosphide. J. Mater. Res. 2 (4), 528 (1987).

    CAS  Article  Google Scholar 

  15. 15.

    D.O. Scanlon and A. Walsh: Bandgap engineering of ZnSnP2 for high-efficiency solar cells. Appl. Phys. Lett. 100 (25), 251911 (2012).

    Article  CAS  Google Scholar 

  16. 16.

    A.S. Borshchevskii and M.G. Vysotina: Certain characteristics of the phase diagram of Zn-Sn-P. Izv. Akad. Nauk SSSR, Neorg. Mater. 12 (4), 615 (1976).

    CAS  Google Scholar 

  17. 17.

    S.A. Mughal, A.J. Payne, and B. Ray: Preparation and phase studies of the ternary semiconducting compounds ZnSnP2, ZnGeP2, ZnSiP2, CdGeP2, and CdSiP2. J. Mater. Sci. 4, 895 (1969).

    CAS  Article  Google Scholar 

  18. 18.

    M. Rubenstein and J.R.W. Ure: Preparation and characteristics of ZnSnP2. J. Phys. Chem. Solids 29, 551 (1968).

    CAS  Article  Google Scholar 

  19. 19.

    P.K. Ajmera, H.Y. Shin, and B. Zamanian: Vacuum growth of thin films of ZnSnP2. Sol. Cells 21, 291 (1987).

    CAS  Article  Google Scholar 

  20. 20.

    J. Sansregret: The growth of thin films of zinc tin phosphide. Mater. Res. Bull. 16, 607 (1981).

    CAS  Article  Google Scholar 

  21. 21.

    G.A. Seryogin, S.A. Nikishin, H. Temkin, A.M. Mintairov, J.L. Merz, and M. Holtz: Order–disorder transition in epitaxial ZnSnP2. Appl. Phys. Lett. 74 (15), 2128 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    S.C. Goel, W.E. Buhro, N.L. Adolphi, and M.S. Conradi: Low-temperature organometallic synthesis of crystalline and galssy ternary semiconductors MIIMIVP2 where MII = Zn and Cd, and MIV = Ge and Sn. J. Organomet. Chem. 449, 9 (1993).

    CAS  Article  Google Scholar 

  23. 23.

    A. Vaipolin, E. Osmanov, and V. Prochukhan: Modifications of A(II)-B(IV)-C2(V) compounds with the sphalerite structure. Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 947 (1972).

    CAS  Google Scholar 

  24. 24.

    A.M. Mintairov, N.A. Sadchikov, T. Sauncy, M. Holtz, G.A. Seryogin, S.A. Nikishin, and H. Temkin: Vibrational Raman and infrared studies of ordering in epitaxial ZnSnP2. Phys. Rev. B 59 (23), 15197 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    M. Bettini: Zone-centered phonons in ternary compounds of chalcopyrite structure. Phys. Status Solidi B 69, 201 (1975).

    CAS  Article  Google Scholar 

  26. 26.

    L.B. Zlatkin, J.F. Markov, A.I. Stekhanov, and M.S. Shur: Lattice reflection and optical constants of ZnSnP2 crystals with chlcopyrite and sphalerite structure. Phys. Status Solidi B 32, 473 (1969).

    CAS  Article  Google Scholar 

  27. 27.

    J. Lazewski and K. Parlinski: Dynamical properties of pnictide ZnSnP2 from ab initio calculations. J. Alloys Compd. 328, 162 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    J. Misiewicz: Optical vibrations in the Zn3P2 lattice. J. Phys.: Condens. Matter 1, 9283 (1989).

    CAS  Google Scholar 

  29. 29.

    G. Pangilinan, R. Sooryakumar, and J. Misiewicz: Raman activity of Zn3P2. Phys. Rev. B 44 (6), 2582 (1991).

    CAS  Article  Google Scholar 

  30. 30.

    R. Binions, C.S. Blackman, C.J. Carmalt, S.A. O’Neill, I.P. Parkin, K. Molloy, and L. Apostilco: Tin phosphide coatings from the atmospheric pressure chemical vapour deposition of SnX4 (X=Cl or Br) and PRxH3−x (R=cychex or phenyl). Polyhedron 21, 1943 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    S. Francoeur, G.A. Seryogin, S.A. Nikishin, and H. Temkin: X-ray diffraction study of chalcopyrite ordering in epitaxial ZnSnP2 grown on GaAs. Appl. Phys. Lett. 74 (24), 3678 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    A.A. Vaipolin, N.A. Goryunova, L.I. Kleshchinskii, G.V. Loshakova, and E.O. Osmanov: The structure and properties of the semiconducting compound ZnSnP2. Phys. Status Solidi B 29, 435 (1968).

    CAS  Article  Google Scholar 

  33. 33.

    S. Francoeur, G.A. Seryogin, S.A. Nikishin, and H. Temkin: Quantitative determination of the order parameter in epitaxial layers of ZnSnP2. Appl. Phys. Lett. 76 (15), 2017 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    S. Jeong, M.T. McDowell, and Y. Cui: Low-temperature self-catalytic growth of tin oxide nanocones over large areas. ACS Nano 5 (7), 5800 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    G.H. Schoenmakers, R. Waagenaar, and J.J. Kelly: Methylviologen redox reactions at semiconductor single crystal electrodes. Ber. Bunsenges. Phys. Chem. 100 (7), 1169 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    N.A. Goryunova, F.P. Kesamanly, and G.V. Loshakova: Electrical properties of ZnSnP2 crystals. Sov. Phys. Semicond. 1 (7), 844 (1968).

    Google Scholar 

  37. 37.

    I-T. Bae, P. Vasekar, D. VanHart, and T. Dhakal: Low-temperature synthesis of Zn3P2 nanowire. J. Mater. Res. 26 (12), 1464 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    L. Brockway, M. Van Laer, Y. Kang, and S. Vaddiraju: Large-scale synthesis and in situ functionalization of Zn3P2 and Zn4Sb3 nanowire powders. Phys. Chem. Chem. Phys. 15 (17), 6260 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    H. Kamimura, R.C. Gouveia, C.J. Dalmaschio, E.R. Leite, and A.J. Chiquito: Synthesis and electrical characterization of Zn3P2 nanowires. Semicond. Sci. Technol. 29 (1), 015001 (2014).

    Article  CAS  Google Scholar 

  40. 40.

    K. Miyauchi, T. Minemura, K. Nakatani, H. Nakanishi, M. Sugiyama, and S. Shirakata: Photoluminescence properties of ZnSnP2 single crystals. Phys. Status Solidi C 6 (5), 1116 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    M.J. Heben, A. Kumar, C. Zheng, and N.S. Lewis: Efficient photovoltaic devices for InP semiconductor/liquid junctions. Nature 340, 621 (1989).

    CAS  Article  Google Scholar 

  42. 42.

    J.M. Foley, M.J. Price, J.I. Feldblyum, and S. Maldonado: Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy Environ. Sci. 5 (1), 5203 (2012).

    CAS  Article  Google Scholar 

Download references


S.L. acknowledges Dr. Junsi Gu and Ms. Meagan Cauble with helpful discussions. This work is supported by the National Science Foundation under Grant No. DMR-1054303.

Author information



Corresponding author

Correspondence to Stephen Maldonado.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Fahrenkrug, E. & Maldonado, S. Synthesis of photoactive ZnSnP2 semiconductor nanowires. Journal of Materials Research 30, 2170–2178 (2015).

Download citation