Microstructure, phase content, and thermal stability of a cast Co–Cr dental alloy after porcelain sintering cycles using electron backscatter diffraction

Abstract

Phase maps of Co–Cr alloys bonded to dental porcelain cycled through an incremental number of porcelain firings at two separate thicknesses (0.5 and 1 mm) were analyzed. Bulk hexagonal close-packed (hcp) phase vol% of the alloy was found to increase with the number of porcelain firings for both 0.5 and 1 mm specimens. At the metal-porcelain interface, a uniform fine-grained hcp phase was observed. The depth and grain size of this hcp layer increased with the number of porcelain firings with the thicker specimens undergoing more substantial growth and transformation. Simple heat transfer modeling of the specimens during heat treatment cycles indicated that the thicker specimen had more time at high temperature to affect the face-centered cubic to hcp phase transformation. Therefore, the amount of porcelain firings and the thickness of the alloy should be considered and kept to a minimal when manufacturing metal-porcelain restoration.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    A. Buford and T. Goswami: Review of wear mechanisms in hip implants: Paper I–General. Mater. Des. 25 (5), 385–393 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    B.E. Pjetursson, I. Sailer, M. Zwahlen, and C.H. Hammerle: A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin. Oral Implants Res. 18 (Suppl. 3), 73–85 (2007).

    Article  Google Scholar 

  3. 3.

    I. Sailer, B.E. Pjetursson, M. Zwahlen, and C.H. Hammerle: A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin. Oral Implants Res. 18 (Suppl. 3), 86–96 (2007).

    Article  Google Scholar 

  4. 4.

    B. Reitemeier, K. Hansel, C. Kastner, and M.H. Walter: Metal-ceramic failure in noble metal crowns: 7-Year results of a prospective clinical trial in private practices. Int. J. Prosthodont 19 (4), 397–399 (2006).

    Google Scholar 

  5. 5.

    T.R. Walton and W.J. O’Brien: Thermal stress failure of porcelain bonded to a palladium-silver alloy. J. Dent. Res. 64 (3), 476–480 (1985).

    CAS  Article  Google Scholar 

  6. 6.

    J. Lenz and S. Kessel: Thermal stresses in metal–ceramic specimens for the ISO crack initiation test (three-point flexure bond test). Dent. Mater. 14 (4), 277–280 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    K. Ishida and T. Nishizawa: The Co-Cr (Cobalt-Chromium) system. Bull. Alloy Phase Diagrams 11 (4), 357–370 (1990).

    CAS  Article  Google Scholar 

  8. 8.

    K. Oikawa, G-W. Qin, T. Ikeshoji, R. Kainuma, and K. Ishida: Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co–Cr system. Acta Mater. 50 (9), 2223–2232 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    H. Okamoto: Co-Cr (cobalt-chromium). J. Phase Equilib. 24 (4), 377–378 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    K.J. Anusavice, R.D. Ringle, and C.W. Fairhurst: Adherence controlling elements in ceramic-metal systems. II. Nonprecious alloys. J. Dent. Res. 56 (9), 1053–1061 (1977).

    CAS  Article  Google Scholar 

  11. 11.

    H.F. López and A.J. Saldivar-Garcia: Martensitic transformation in a cast Co-Cr-Mo-C alloy. Metall. Mater. Trans. A 39 (1), 8–18 (2008).

    Article  Google Scholar 

  12. 12.

    R. Turrubiates-Estrada, A. Salinas-Rodriguez, and H.F. Lopez: FCC to HCP transformation kinetics in a Co–27Cr–5Mo–0.23C alloy. J. Mater. Sci. 46 (1), 254–262 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    T. Matković, P. Matković, and J. Malina: Effects of Ni and Mo on the microstructure and some other properties of Co–Cr dental alloys. J. Alloys Compd. 366 (1–2), 293–297 (2004).

    Article  Google Scholar 

  14. 14.

    S-H. Lee, N. Nomura, and A. Chiba: Significant improvement in mechanical properties of biomedical Co-Cr-Mo alloys with combination of N addition and Cr-enrichment. Mater. Trans. 49 (2), 260–264 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    D. Prior, E. Mariani, and J. Wheeler: EBSD in the earth sciences: Applications, common practice, and challenges. In Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field eds., Springer, 2009.

  16. 16.

    N. Shigematsu, D.J. Prior, and J. Wheeler: First combined electron backscatter diffraction and transmission electron microscopy study of grain boundary structure of deformed quartzite. J. Microsc. 224 (Pt 3), 306–321 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    M. Vollmer: Newton’s law of cooling revisited. Eur. Phys. J. 30 (5), 1063 (2009).

    Article  Google Scholar 

  18. 18.

    W.D. Kingery: Introduction to Ceramics (Wiley, 1960).

    Google Scholar 

  19. 19.

    L. Levesque: Law of cooling, heat conduction and Stefan-Boltzmann radiation laws fitted to experimental data for bones irradiated by CO2 laser. Biomed. Opt. Express 5 (3), 701–712 (2014).

    Article  Google Scholar 

  20. 20.

    S. Karato: Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge University Press, 2008).

  21. 21.

    J. Tullis and R.A. Yund: Grain growth kinetics of quartz and calcite aggregates. J. Geol. 90 (3), 301–318 (1982).

    CAS  Article  Google Scholar 

  22. 22.

    Z. Nishiyama: Martensitic Transformation (Elsevier Science, 2012).

    Google Scholar 

  23. 23.

    K. Yamanaka, M. Mori, and A. Chiba: Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co–Cr–Mo alloys. J. Mech. Behav. Biomed. Mater. 29 (0), 417–426 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, and R.C. Pond: In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Mater. 52 (4), 821–832 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    E.P. Lautenschlager, E.H. Greener, and W.E. Elkington: Microprobe analyses of gold-porcelain bonding. J. Dent. Res. 48 (6), 1206–1210 (1969).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the assistance of Brent Pooley from Geology, University of Otago and Jin Yoo from Faculty of Dentistry, University of Otago for their assistance with some specimen preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Chun Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K.C., Prior, D.J., Waddell, J.N. et al. Microstructure, phase content, and thermal stability of a cast Co–Cr dental alloy after porcelain sintering cycles using electron backscatter diffraction. Journal of Materials Research 30, 2188–2196 (2015). https://doi.org/10.1557/jmr.2015.178

Download citation