Effect of catalyst concentration and high-temperature activation on the CO2 adsorption of carbon nanospheres prepared by solvothermal carbonization of β-cyclodextrin

Abstract

Microporous carbon nanospheres were prepared from β-cyclodextrin (β-CD) by solvothermal carbonization in o-dichlorobenzene in the presence of various concentrations of p-toluene sulfonic acid (PTSA). The contribution of PTSA toward solvothermal char (STC) was established. The STC showed the highest surface area, porosity, and CO2 sorption capacity at a PTSA to β-CD weight ratio of 2.5. The surface area, pore volume, and CO2 sorption capacity were further increased by an in situ high-temperature activation due to the oxidation of carbon at high temperature by oxygen present in the STC. The high-temperature activation reduces the significance of PTSA concentration, as the activated STC showed surface area, micropore volume, and CO2 adsorption capacity in a close range at the PTSA to β-CD weight ratio in the range of 0.04–2.50. The highest CO2 adsorption capacity of the STC increased from 2.4 to 3.5 mmol/g upon the high-temperature activation. The activated STC adsorbs significant amount (0.35 mmol/g) of CO2 from dry air containing 400 ppm CO2. The activated STC showed excellent regeneration stability and selectivity over nitrogen.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

References

  1. 1.

    J.R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.K. Jeong, P.B. Balbuena, and H.C. Zhou: Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255(15–16), 1791–1823 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Weif, and M. Fan: Review of recent advances in carbon dioxide separation and capture. RSC Adv. 3(45), 22739–22773 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    F. Su and C. Lu: CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ. Sci. 5(10), 9021–9027 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, and R. Hausler: Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 13007–13014 (2008).

    Article  Google Scholar 

  5. 5.

    T. Li, J.E. Sullivan, and N.L. Rosi: Design and preparation of a core–shell metal–organic framework for selective CO2 capture. J. Am. Chem. Soc. 135(6), 9984–9987 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    L. Jian, P.K. Thallapally, B.P. McGrail, D.R. Brown, and L. Liu: Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 41(6), 2308–2322 (2012).

    Article  Google Scholar 

  7. 7.

    X. Zhu, C-L. Do-Thanh, C.R. Murdock, K.M. Nelson, C. Tian, S. Brown, S.M. Mahurin, D.M. Jenkins, J. Hu, B. Zhao, H. Liu, and S. Dai: Efficient CO2 capture by a 3D porous polymer derived from Tröger’s base. Macro Lett. 2(8), 660–663 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    W. Lu, J.P. Sculley, D. Yuan, R. Krishna, Z. Wei, and H.C. Zhou: Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem., Int. Ed. 51(30), 7480–7484 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    S.M. Hong, S.H. Kim, and K.B. Lee: Adsorption of carbon dioxide on 3-aminopropyl-triethoxysilane modified graphite oxide. Energy Fuels 27(6), 3358–3363 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    A. Sayari, Y. Belmabkhout, and E. Da’na: CO2 deactivation of supported amines: Does the nature of amine matter?Langmuir 28(9), 4241–4247 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    V. Jimenez, A.R. Lucas, J.A. Díaz, P. Sanchez, and A. Romero: CO2 capture in different carbon materials. Environ. Sci. Technol. 46(13), 7407–7414 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    N.P. Wickramaratnea and M. Jaroniec: Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J. Mater. Chem. A 1(1), 112–116 (2013).

    Article  Google Scholar 

  13. 13.

    R. Narasimman, V. Sujith, and K. Prabhakaran: Carbon foam with microporous cell wall and strut for CO2 capture. RSC Adv. 4(2), 578–582 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    B. Zhao, Y. Su, W. Tao, L. Li, and Y. Peng: Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review. Int. J. Greenhouse Gas Control 9, 355–371 (2012).

    Article  Google Scholar 

  15. 15.

    M. Ramdin, T.W. de Loos, and T.J.H. Vlugt: Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 5, 6668–6681 (2012).

    Article  Google Scholar 

  16. 16.

    G. Grasa, B. González, M. Alonso, and J.C. Abanades: Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions. Energy Fuels 21(6), 3560–3562 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    M. Sevilla and A.B. Fuertes: Sustainable porous carbons with superior performance for CO2 capture. Energy Environ. Sci. 4, 1765–1771 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    M.D. Deanna, B. Smit, and R.L. Jeffrey: Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 49(35), 6058–6082 (2010).

    Article  Google Scholar 

  19. 19.

    J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, and D. Zhao: A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23(18), 2322–2328 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    M. Balsamo, T. Budinova, A. Erto, A. Lancia, B. Petrova, N. Petrov, and B. Tsyntsarski: CO2 adsorption onto synthetic activated carbon: Kinetic, thermodynamic and regeneration studies. Sep. Purif. Technol. 116(1), 214–221 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    D.P. Bezerra, R.S. Oliveira, R.S. Vieira, C.L. Cavalcante, Jr., and D.C.S. Azevedo: Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption 17(1), 235–246 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Z. Zhang, J. Zhou, W. Xing, Q. Xue, Z. Yan, S. Zhuo, and S.Z. Qiao: Critical role of small micropores in high CO2 uptake. Phys. Chem. Chem. Phys. 15(7), 2523–2529 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    M.G. Plaza, A.S. Gonzalez, C. Pevida, J.J. Pis, and F. Rubiera: Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl. Energy 99(1), 272–279 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    B. Hu, S.H. Yu, K. Wang, L. Liu, and X. Xu: Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Trans. 40, 5414–5423 (2008).

    Article  Google Scholar 

  25. 25.

    W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou, S. Zhuo, Z. Yan, H. Gao, G. Wang, and S.Z. Qiao: Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 5(6), 7323–7327 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    M. Xiaoyu, C. Minhua, and H. Changwen: Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A 1(3), 913–918 (2013).

    Article  Google Scholar 

  27. 27.

    M.M. Titirici, A. Thomas, and M. Antonietti: Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?New J. Chem. 31(6), 787–789 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    M.L. Bender and M. Komiyama: Cyclodextrin Chemistry (Springer-Verlag, New York, 1978).

    Google Scholar 

  29. 29.

    Y. Shin, W. Li-Qiong, B. In-Tae, W.A. Bruce, and J.E. Gregory: Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C 112(37), 14236–14240 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Y.C. Zhao, L. Zhao, M. Li-Juan, and B.H. Han: One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins. J. Mater. Chem. A 1(33), 9456–9461 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    S. Choi, J.H. Drese, and C.W. Jones: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9), 796–854 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    K.T. Chue, J.N. Kim, Y.J. Yoo, and S.H. Cho: Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34(2), 591–598 (1995).

    CAS  Article  Google Scholar 

  33. 33.

    W. Lu, J.P. Sculley, D. Yuan, R. Krishna, and H. Zhou: Carbon dioxide capture from air using amine-grafted porous polymer networks. J. Phys. Chem. C 117(8), 4057–4061 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, and J.R. Long: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134(16), 7056–7065 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    C. Gebald, J.A. Wurzbacher, P. Tingaut, T. Zimmermann, and A. Steinfeld: Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 45(20), 9101–9108 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna, and J.R. Long: Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4(8), 3030–3040 (2011).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge Director, VSSC and Director, IIST for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deepthi L. Sivadas.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sivadas, D.L., Narasimman, R., Rajeev, R. et al. Effect of catalyst concentration and high-temperature activation on the CO2 adsorption of carbon nanospheres prepared by solvothermal carbonization of β-cyclodextrin. Journal of Materials Research 30, 1761–1771 (2015). https://doi.org/10.1557/jmr.2015.116

Download citation