Optical properties of the composite film from P3HT and hydrothermally synthesized porous carbon nanospheres

Abstract

Porous carbon nanospheres (PCNSs), with a diameter of about 100 nm and porous structure, were synthesized by a hydrothermal method. Then, poly(3-hexylthiophene):PCNS (P3HT:PCNS) composite films were prepared by a spin-coating method using PCNS and P3HT mixtures in a chlorobenzene solution. The effects of mixture ratio, revolving speed, suspension concentration during spin coating, and annealing on the optical properties of P3HT:PCNS composite films were investigated. The results indicate that PCNSs exhibit an energy level matching with P3HT and the optical properties of the P3HT:PCNSs depend strongly on mixture ratio, revolving speed, and suspension concentration during spin coating. A 2:1 ratio of P3HT to PCNSs, suspension concentration of 20 mg/mL (P3HT), and spinning rate of 2000 rpm are appropriate for fabricating P3HT:PCNS composite films, and annealing increases the crystallinity of P3HT, resulting in enhanced visible light absorption and increased charge transport in composite films.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

REFERENCES

  1. 1.

    Y.B. Yuan, Z.G. Xiao, B. Yang, and J.S. Huang: Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 25, 3973 (2013).

    Google Scholar 

  2. 2.

    M.T. Dang, L. Hirsch, G. Wantz, and J.D. Wuest: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 3734 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Y.M. Wang, W. Wei, X. Liu, and Y.J. Gu: Research progress on polymer heterojunction solar cells. Sol. Energy Mater. Sol. Cells 98, 129 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    L.L. Lu, D.Q. Bi, Z. Liu, C.L. Yang, and X.D. Xiao: Pollution problems in the production process of solar cells. Sci. China Chem. 43, 687 (2013).

    CAS  Google Scholar 

  5. 5.

    L. Dou, J.B. You, J. Yang, C.C. Chen, Y.J. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang: Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 6, 180 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    M.A. Ibrahem, H.Y. Wei, M.H. Tsai, K.C. Ho, J.J. Shyne, and C.W. Chu: Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 108, 156 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, and Y. Yang: A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1 (2013).

    Article  Google Scholar 

  8. 8.

    J.B. You, C.C. Chen, Z.R. Hong, K. Yoshimura, K. Ohya, R. Xu, S.L. Ye, J. Gao, G. Li, and Y. Yang: 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Adv. Mater. 25, 3973 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    A.A. Deshmukh, S.D. Mhlanga, and N.J. Coville: Carbon spheres. Mater. Sci. Eng., R 70, 1 (2010).

    Article  Google Scholar 

  10. 10.

    Y.Z. Jin, C. Gao, K.H.W.K. Hsu, Y.Q. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C.Y. Lee, S. Acquah, H. Kroto, and D.R.M. Walton: Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43, 1944 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    J.W. Liu, M.W. Shao, Q. Tang, X. Chen, Z. Liu, and Y. Qian: A medial-reduction route to hollow carbon spheres. Carbon 41, 1682 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    S. Wang, W.C. Li, G.P. Hao, Y. Hao, Q. Sun, X.Q. Zhang, and A.H. Lu: Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J. Am. Chem. Soc. 133, 15304 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Y.Z. Yang, X.G. Liu, C.Y. Zhan, M.C. Guo, and B.S. Xu: Controllable synthesis and modification of carbon microspheres from deoiled asphalt. J. Phys. Chem. Solids 71, 235 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Y.Z. Yang: Surface Chemistry of Carbon Microbeads. 1st edition. (Chemical Industry Press, Beijing, 2012); p. 21–22.

    Google Scholar 

  15. 15.

    Y.Z. Yang, J.J. Song, Y. Li, X.G. Liu, and B.S. Xu: Synthesis and optical property of P3HT/carbon microsphere composite film. J. Mater. Res. 28, 998 (2013).

    Article  Google Scholar 

  16. 16.

    Y.Z. Yang, J.J. Song, Y. Li, X.G. Liu, and B.S. Xu: Functional modification of carbon microspheres by 1,6-hexanediamine. J. Chem. Ind. Eng. 63, 3350 (2012).

    CAS  Google Scholar 

  17. 17.

    Y. Li, L.P. Yan, Y.Z. Yang, X.G. Liu, and B.S. Xu: Spin-coated P3HT: Aminated carbon microsphere composite films for polymer solar cells. J. Mater. Res. 29, 492 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    L.P. Yan, Y. Li, Y.Z. Yang, X.G. Liu, Y.C. Chen, and B.S. Xu: P3HT/Dodecylamine functioned carbon microspheres composite films for polymer solar cells. Fullerenes, Nanotubes, Carbon Nanostruct. 23, 549 (2014).

    Article  Google Scholar 

  19. 19.

    L.P. Yan, Y.M. Hao, W.J. Yang, Y.Z. Yang, X.G. Liu, and B.S. Xu: Electrochemical characterization of energy level of functionalized carbon microspheres. CIESC J. 65, 3114 (2014).

    CAS  Google Scholar 

  20. 20.

    H.J. Zhao, Y.Z. Yang, X.G. Liu, and B.S. Xu: Preparation of surface molecularly imprinted matrix materials porous carbon microspheres from glucose by hydrothermal carbonization method. China Sciencepap. 7, 898 (2012).

    CAS  Google Scholar 

  21. 21.

    J. Subbiah, C.M. Amb, I. Irfan, Y.L. Gao, J.R. Reynolds, and F. So: High-efficiency inverted polymer solar cells with double interlayer. ACS Appl. Mater. Interfaces 4, 866 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Li, Y. Hu, Y. Zhao, G.Q. Shi, L.E. Deng, Y.B. Hou, and L.T. Qu: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776 (2011).

    Article  Google Scholar 

  23. 23.

    M. Thomas, B.J. Worfolk, D.A. Rider, M.T. Taschuk, J.M. Buriak, and M.J. Brett: C60 fullerene nanocolumns polythiophene heterojunctions for inverted organic photovoltaic cells. ACS Appl. Mater. Interfaces 3, 1887 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    J. Arranz-Andres and M.J. Blau: Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon 46, 2067 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    B. Xu and S. Holdcroft: Molecular control of luminescence from poly(3-hexylthiophenes). Macromolecules 26, 4457 (1993).

    CAS  Article  Google Scholar 

  26. 26.

    M. Al-Ibrahim, H. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss: Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energy Mater. Sol. Cells 85, 13 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, and B. Jousselme: Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv. Funct. Mater. 17, 3363 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    T. Endale, E. Sovernigo, A. Radivo, S.D. Zilio, A. Pozzato, T. Yohannes, L. Vaccari, and M. Tormen: Investigation of photodegradation in polymer solar cells blended with different fullerenes derivatives. Sol. Energy Mater. Sol. Cells 123, 150 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    G. Li, V. Shrotriya, Y. Yao, and Y. Yang: Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 98, 043704 (2005).

    Article  Google Scholar 

  30. 30.

    T.L. Wang, C.h. Yang, Y.T. Shieh, A.C. Yeh, C.H. Chen, and T.H. Ho: Effects of annealing on the polymer solar cells based on CdSe–PVK electron acceptor. Mater. Chem. Phys. 132, 131 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Z.Y. Liu, L.J. Liu, H. Li, Q.F. Dong, S.Y. Yao, A.B. KiddIV, X.Y. Zhang, J.Y. Li, and W.J. Tian: “Green” polymer solar cell based on water-soluble poly[3-(potassium-6-hexanoate) thiophene-2,5-diyl] and aqueous-dispersible noncovalent functionalized graphene sheets. Sol. Energy Mater. Sol. Cells 97, 28 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    G.T. Yue, J.H. Wu, Y.M. Xiao, H.F. Ye, G.X. Xie, Z. Lan, Q.H. Li, M.L. Huang, and J.M. Lin: Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chin. Sci. Bull. 55, 835 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences for atomic force microscope test. This work was supported by National Natural Science Foundation of China (21176169), Shanxi Provincial Key Innovative Research Team in Science and Technology (2012041011), International Science & Technology Cooperation Program of China (2012DFR50460), Research Project Supported by Shanxi Scholarship Council of China (2012-038), Postgraduate Innovation Program of Shanxi Province (20143010), and Postgraduate Innovation Foundation of Taiyuan University of Technology (S2014103).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yongzhen Yang or Xuguang Liu.

Additional information

Contributing Editor: Mauricio Terrones

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Yang, W., Hao, Y. et al. Optical properties of the composite film from P3HT and hydrothermally synthesized porous carbon nanospheres. Journal of Materials Research 30, 1599–1610 (2015). https://doi.org/10.1557/jmr.2015.108

Download citation