Effect of annealing time on structural and microwave dielectric characteristics of Li2ZnTi3O8 ceramics

Abstract

In the present work, the Li2ZnTi3O8 ceramics were prepared via the solid-state reaction method, afterward annealed at 800 °C in a time variation from 4 to 20 h. The ordering, microstructures and dielectric properties were investigated using x-ray diffraction, scanning electron microscopy, network analyzer, and Raman spectroscopy. The most significant enhancement of quality factor is obtained in the sample annealed for 20 h, while the dielectric constant and temperature coefficient of resonant frequency change slightly. This result mainly attributes to the enhancement of ordering, which could be related to the increase in the Zn–O bond strength in ZnO4 tetrahedra. Meanwhile, the full-width at half-maximum of A1g mode decreased with higher annealing time, which suggested less variation in the Zn–O bond length and a higher degree of ordering. The best combination of microwave dielectric characteristic is obtained in the sample annealed at 800 °C for 20 h: Q × f = 112,400 GHz, εr = 24.500, and τf = −11 ppm/°C.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

REFERENCES

  1. 1.

    M.T. Sebastian: Dielectric Materials for Wireless Communications (Elseiver, Oxford, U. K, 2008); pp. 2, 3.

    Google Scholar 

  2. 2.

    Y-C. Chen, K-C. Chang, and D-Y. Tsai: A hybrid dielectric resonator antenna based upon novel complex perovskite microwave ceramic. Ceram. Int. 39, 8043–8048 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino: Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 67, c59–c61 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    G. Chen, M. Hou, Y. Bao, C. Yuan, C. Zhou, and H. Xu: Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10, 1–10 (2013).

    Article  Google Scholar 

  5. 5.

    B. Tang, H. Li, P. Fan, S. Yu, and S. Zhang: The effect of Mg: Ti ratio on the phase composition and microwave dielectric properties of MgTiO3 ceramics prepared by one synthetic process. J. Mater. Sci. 25, 2482–2486 (2014).

    CAS  Google Scholar 

  6. 6.

    D. Pamu, G. Lakshmi Narayana Rao, and K-C. James Raju: Enhanced microwave dielectric properties of (Zr0.8,Sn0.2)TiO4 ceramics with the addition of its own nanoparticles. J. Am. Ceram. Soc. 95, 126–132 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi: Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66, 421–423 (1983).

    CAS  Article  Google Scholar 

  8. 8.

    H. Kawai, M. Tabuchi, M. Nagata, H. Tukamoto, and A.R. West: Crystal chemistry and physical properties of complex lithium spinels Li2MM’3O8 (M=Mg, Co, Ni, Zn; M’=Ti, Ge). J. Mater. Chem. 8, 1273–1280 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    H. Taghipour Armaki, E. Taheri-Nassaj, and M. Bari: Phase analysis and improvement of quality factor of Li2ZnTi3O8 ceramics by annealing treatment. J. Alloys Compd. 581, 757–761 (2013).

    Article  Google Scholar 

  10. 10.

    S. George and M.T. Sebastian: Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    S. George and M.T. Sebastian: Low-temperature sintering and microwave dielectric properties of Li2ATi3O8 (A=Mg, Zn) Ceramics. Int. J. Appl. Ceram. Technol. 8, 1400–1407 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    V.S. Hernandez and L.M. Torres Martinez: Stoichiometry, structures and polymorphism of spinel-like phases, Lil.33xZn2−2xTil+0.67xO4. J. Mater. Chem. 6, 1533–1536 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    S. Kume, M. Yasuoka, N. Omura, and K. Watari: Effects of annealing on dielectric loss and microstructure of aluminum nitride ceramics. J. Am. Ceram. Soc. 88, 3229–3231 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    S. Kume, M. Yasuoka, N. Omura, and K. Watari: Effects of annealing on dielectric loss and microstructure of aluminum nitride ceramics. J. Eur. Ceram. Soc. 26, 1831–1834 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    S. Bindra Narang and S. Bahel: Low loss dielectric ceramics for microwave applications: A review. J. Ceram. Process. Res. 11, 316–321 (2010).

    Google Scholar 

  16. 16.

    C-L. Huang, C-H. Su, C-M. Chang, and E. Leite: High Q microwave dielectric ceramics in the Li2(Zn1−xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) system. J. Am. Ceram. Soc. 94, 4146–4149 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    T. Santhosh Kumar, D. Goswami, and D. Pamu: Effects of CeO2 nanoparticles and annealing temperature on the microwave dielectric properties of MgTiO3 ceramics. Ceram. Int. 40, 1125–1131 (2013).

    Google Scholar 

  18. 18.

    I-T Kim and Y-H. Kim: Ordering and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics. J. Mater. Res. 12, 518–525 (1997).

    CAS  Article  Google Scholar 

  19. 19.

    M. Bieringer, S.M. Moussa, L.D. Noailles, A. Burrows, and C.J. Kiely: Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ. J. Am. Ceram. Soc. 15, 586–597 (2003).

    CAS  Google Scholar 

  20. 20.

    J. Deng, X. Xing, J. Chen, R. Yu, and G. Liu: Cation ordering in the microwave dielectric ceramic BaCd1/3Nb2/3O3. Scr. Mater. 56 (1), 65–68 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    C-T. Lee, Y-C. Lin, C-Y. Huang, C-Y. Su, and C-L. Hu: Cation ordering and dielectric characteristics in barium zinc niobate. J. Am. Ceram. Soc. 90, 483–489 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    D. Houivet, B. Lamagnere, J. El Fallah, and J-M. Haussonne: Effect of annealing on the microwave properties of (Zr,Sn)TiO4 ceramics. J. Eur. Ceram. Soc. 21, 1727–1730 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    D. Rout, G.S. Babu, V. Subramanian, and V. Sivasubramanian: Study of cation ordering in Ba(Yb1/2Ta1/2)O3 by X-ray diffraction and raman spectroscopy. Int. J. Appl. Ceram. Technol. 5, 522–528 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    S-K. Singh, S-R. Kiran, and V.R.K. Murthy: Structural, Raman spectroscopic and microwave dielectric studies on spinel Li2Zn(1−x)NixTi3O8 compounds. Mater. Chem. Phys. 141, 822–827 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    R. Yang, H. Liu, Y. Wang, W. Jiang, X. Hao, J. Zhan, and S. Liu: Structure and properties of ZnO-containing lithium–iron–phosphate glasses. J. Alloys Compd. 513, 97–100 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    C-M. Julien and M. Massot: Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater. Sci. Eng., B 97, 217–230 (2003).

    Article  Google Scholar 

  27. 27.

    R. Freer and F. Azough: Microstructural engineering of microwave dielectric ceramics. J. Eur. Ceram. Soc. 28, 1433–1441 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    S-J. Penn, N-M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    I-A. Leonidov, O-N. Leonidova, R-F. Samigullina, and M-V. Patrakeev: Structural aspects of lithium transfer in solid electrolytes Li2x Zn2−3xTi1+xO4 (0.33≤ x≤ 0.67). J. Struct. Chem. 45, 262–268 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    P-P. Ma, L. Yi, X-Q. Liu, L. Li, and X-M. Chen: Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6−x/2Zn0.4−x/2Mgx)1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc. 96 (6), 1795–1800 (2013).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ehsan Taheri-Nassaj.

Additional information

Contributing Editor: Ian M. Reaney

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taghipour-Armaki, H., Taheri-Nassaj, E. & Bari, M. Effect of annealing time on structural and microwave dielectric characteristics of Li2ZnTi3O8 ceramics. Journal of Materials Research 30, 1619–1628 (2015). https://doi.org/10.1557/jmr.2015.107

Download citation