Abstract
At room temperature (RT), Fe2Mo3O12 is stable in monoclinic structure phase and above 780 K it transforms to an orthorhombic phase. Experiment shows that in the high temperature orthorhombic phase, the material exhibits low or negative thermal expansion property. In the paper, new compounds with the formula Fe2−x(ZrMg)0.5xMo3O12 (x = 0–1.8) are reported. The compounds are designed and synthesized to reduce the phase transition temperature of the Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+ in it. It is found that the monoclinic-to-orthorhombic phase transition temperature can be lowered effectively by the co-incorporation. The orthorhombic phase of Fe0.4(ZrMg)0.8Mo3O12 may be obtained at RT and it may keep the orthorhombic structure as low as 103 K. Meanwhile, the co-incorporation of Zr4+ and Mg2+ may tailor the coefficient of thermal expansion (CTE) of the Fe2Mo3O12 and the near-zero CTEs are obtained for the compound around x = 1.7 (Fe0.3(ZrMg)0.85Mo3O12). This work paves the way toward developing low-cost and near-zero thermal expansion materials over wide temperature ranges.
This is a preview of subscription content, access via your institution.










References
- 1.
T.A. Mary, J.S.O. Evans, T. Vogt, and A.W. Sleight: Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90 (1996).
- 2.
Y. Yamamura, N. Nakajima, and T. Tsuji: Calorimetric and x-ray diffraction studies of α-to-β structural phase transitions in HfW2O8 and ZrW2O8. Phys. Rev. B 64, 184109 (2001).
- 3.
C.A. Perottoni and J.A.H. Da Jornada: Pressure-induced amorphization and negative thermal expansion in ZrW2O8. Science 280, 886 (1998).
- 4.
E.J. Liang: Negative thermal expansion materials and their applications: A survey of recent patents. Recent Pat. Mater. Sci. 3, 106 (2010).
- 5.
P.P. Sahoo, S. Sumithra, G. Madras, and T.N. Row: Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7. Inorq. Chem. 50(18), 8774 (2011).
- 6.
J. Chen, L.L. Fan, Y. Ren, Z. Pan, J.X. Deng, R.B. Yu, and X.R. Xing: Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys. Rev. Lett. 110, 115901 (2013).
- 7.
S. Sumithra and A.M. Umarji: Negative thermal expansion in rare earth molybdates. Solid State Sci. 8(12), 1453 (2006).
- 8.
S. Sumithra and A.M. Umarji: Role of structure on the thermal expansion of Ln2W3O12 (Ln=La, Nd, Dy, Y, Er, and Yb). Solid State Sci. 6(12), 1313 (2004).
- 9.
S. Sumithra, A.K. Tyagib, and A.M. Umarjia: Negative thermal expansion in Er2W3O12 and Yb2W3O12 by high temperature X-ray diffraction. Mater. Sci. Eng. B 116(1), 14 (2005).
- 10.
M. Cetinkol, A.P. Wilkinson, and P.L. Lee: Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2. J. Solid State Chem. 182, 1304 (2009).
- 11.
M. Cetinkol and A.P. Wilkinson: Pressure dependence of negative thermal expansion in Zr2(WO4)(PO4). Solid State Commun. 149, 421 (2009).
- 12.
J.S.O. Evans, T.A. Mary, and A.W. Sleight: Structure of Zr2(WO4)(PO4)2 from powder x-ray data: Cation ordering with no superstructure. J. Solid State Chem. 120(1), 101 (1995).
- 13.
J.S.O. Evans, T.A. Mary, and A.W. Sleight: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 (1997).
- 14.
M. Ari, P.M. Jardim, B.A. Marinkovic, F. Rizzo, and F.F. Ferreira: Thermal expansion of Cr2 xFe2-2 xMo3O12, Al2 xFe2-2 xMo3O12 and Al2 xCr2-2 xMo3O12 solid solutions. J. Solid State Chem. 181, 1472 (2008).
- 15.
S. Sumithra and A.M. Umarji: Hygroscopicity and bulk thermal expansion in Y2W3O12. Mater. Res. Bull. 40, 167 (2005).
- 16.
E.J. Liang, H.L. Huo, J.P. Wang, and M.J. Chao: Effect of water species on the phonon modes in orthorhombic Y2(MoO4)3 revealed by Raman spectroscopy. J. Phys. Chem. C 112, 6577 (2008).
- 17.
A.K. Tyagi, S.N. Achary, and M.D. Mathews: Phase transition and negative thermal expansion in A2(Mo4)3 system (A=Fe3+, Cr3+ and Al3+). J. Alloy. Compd. 339, 207 (2002).
- 18.
Z.Y. Li, W.B. Song, and E.J. Liang: Phase transition, and crystal water of Fe2−xYxMo3O12. J. Phys. Chem. C 115, 17806 (2011).
- 19.
Q.J. Li, B.H. Yuan, W.B. Song, E.J. Liang, and B. Yuan: The phase transition, hygroscopicity, and thermal expansion properties of Yb2−xAlxMo3O12. Chin. Phys. B 21(4), 432 (2012).
- 20.
A.W. Sleight and L.H. Brixner: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7, 172 (1973).
- 21.
B.A. Marinkovic, P.M. Jardim, M. Ari, R.R. Avillez, F. Rizzo, and F.F. Ferreira: Low positive thermal expansion in HfMgMo3O12. Phys. Status Solidi B 245, 2514 (2008).
- 22.
T. Suzuki and A. Omote: Negative thermal expansion in (HfMg)(WO4)3J. Am. Ceram. Soc. 87(7), 1365 (2004).
- 23.
A.M. Gindhart, C. Linda, and M. Green: Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. J. Mater. Res. 23, 210 (2008).
- 24.
T. Suzuki and A. Omote: Zero thermal expansion in (Al2 x(HfMg)1−x)(WO4)3. J. Am. Ceram. Soc. 89, 691 (2006).
- 25.
T. Varga, J.L. Moats, S.V. Ushakov, and A. Navrotsky: Thermochemistry of A2M3O12 negative thermal expansion materials. J. Mater. Res. 22, 2512 (2007).
- 26.
J.M. Kimberly, P.R. Carl, B. Mario, A.M. Bojan, P. Luciana, and A.W. Mary: Near-zero thermal expansion in In(HfMg)0.5Mo3O12. J. Am. Ceram. Soc. 96(2), 561 (2013).
- 27.
W.B. Song, E.J. Liang, X.S. Liu, Z.Y. Li, B.H. Yuan, and J.Q. Wang: A negative thermal expansion material of ZrMgMo3O12. Chin. Phys. Lett. 30(12), 126502 (2013).
- 28.
J. Peng, M.M. Wu, H. Wang, Y.M. Hao, Z. Hua, Z.X. Yu, D.F. Chen, R. Kiyanagi, J.S. Fieramosca, S. Short, and J. Jorgensen: Structures and negative thermal expansion properties of solid solutions YxNd2− xW3O12 (x = 0.0–1.0, 1.6–2.0). J. Alloy. Compd. 453, 49 (2008).
- 29.
T.A. Mary and A.W. Sleight: Bulk thermal expansion for tungstate and molybdates of the type A2M3O12. J. Mater. Res. 14(3), 912 (1999).
- 30.
L. Wang, P.F. Yuan, F. Wang, Q. Sun, E.J. Liang, and Y. Jia: Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12. Mater. Res. Bull. 48, 2724 (2013).
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation of China (No. 10974183, 11104252), by the Ministry of Education of China (No. 20114101110003), by the fund for Science & Technology innovation team of Zhengzhou (No. 112PCXTD337), and by the postdoctoral research sponsorship in Henan province (Grant No. 2011002).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Song, W., Yuan, B., Liu, X. et al. Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+. Journal of Materials Research 29, 849–855 (2014). https://doi.org/10.1557/jmr.2014.63
Received:
Accepted:
Published:
Issue Date: