Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+


At room temperature (RT), Fe2Mo3O12 is stable in monoclinic structure phase and above 780 K it transforms to an orthorhombic phase. Experiment shows that in the high temperature orthorhombic phase, the material exhibits low or negative thermal expansion property. In the paper, new compounds with the formula Fe2−x(ZrMg)0.5xMo3O12 (x = 0–1.8) are reported. The compounds are designed and synthesized to reduce the phase transition temperature of the Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+ in it. It is found that the monoclinic-to-orthorhombic phase transition temperature can be lowered effectively by the co-incorporation. The orthorhombic phase of Fe0.4(ZrMg)0.8Mo3O12 may be obtained at RT and it may keep the orthorhombic structure as low as 103 K. Meanwhile, the co-incorporation of Zr4+ and Mg2+ may tailor the coefficient of thermal expansion (CTE) of the Fe2Mo3O12 and the near-zero CTEs are obtained for the compound around x = 1.7 (Fe0.3(ZrMg)0.85Mo3O12). This work paves the way toward developing low-cost and near-zero thermal expansion materials over wide temperature ranges.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10


  1. 1.

    T.A. Mary, J.S.O. Evans, T. Vogt, and A.W. Sleight: Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Yamamura, N. Nakajima, and T. Tsuji: Calorimetric and x-ray diffraction studies of α-to-β structural phase transitions in HfW2O8 and ZrW2O8. Phys. Rev. B 64, 184109 (2001).

    Article  Google Scholar 

  3. 3.

    C.A. Perottoni and J.A.H. Da Jornada: Pressure-induced amorphization and negative thermal expansion in ZrW2O8. Science 280, 886 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    E.J. Liang: Negative thermal expansion materials and their applications: A survey of recent patents. Recent Pat. Mater. Sci. 3, 106 (2010).

    Article  Google Scholar 

  5. 5.

    P.P. Sahoo, S. Sumithra, G. Madras, and T.N. Row: Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7. Inorq. Chem. 50(18), 8774 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    J. Chen, L.L. Fan, Y. Ren, Z. Pan, J.X. Deng, R.B. Yu, and X.R. Xing: Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys. Rev. Lett. 110, 115901 (2013).

    Article  Google Scholar 

  7. 7.

    S. Sumithra and A.M. Umarji: Negative thermal expansion in rare earth molybdates. Solid State Sci. 8(12), 1453 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    S. Sumithra and A.M. Umarji: Role of structure on the thermal expansion of Ln2W3O12 (Ln=La, Nd, Dy, Y, Er, and Yb). Solid State Sci. 6(12), 1313 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    S. Sumithra, A.K. Tyagib, and A.M. Umarjia: Negative thermal expansion in Er2W3O12 and Yb2W3O12 by high temperature X-ray diffraction. Mater. Sci. Eng. B 116(1), 14 (2005).

    Article  Google Scholar 

  10. 10.

    M. Cetinkol, A.P. Wilkinson, and P.L. Lee: Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2. J. Solid State Chem. 182, 1304 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    M. Cetinkol and A.P. Wilkinson: Pressure dependence of negative thermal expansion in Zr2(WO4)(PO4). Solid State Commun. 149, 421 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    J.S.O. Evans, T.A. Mary, and A.W. Sleight: Structure of Zr2(WO4)(PO4)2 from powder x-ray data: Cation ordering with no superstructure. J. Solid State Chem. 120(1), 101 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    J.S.O. Evans, T.A. Mary, and A.W. Sleight: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    M. Ari, P.M. Jardim, B.A. Marinkovic, F. Rizzo, and F.F. Ferreira: Thermal expansion of Cr2 xFe2-2 xMo3O12, Al2 xFe2-2 xMo3O12 and Al2 xCr2-2 xMo3O12 solid solutions. J. Solid State Chem. 181, 1472 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    S. Sumithra and A.M. Umarji: Hygroscopicity and bulk thermal expansion in Y2W3O12. Mater. Res. Bull. 40, 167 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    E.J. Liang, H.L. Huo, J.P. Wang, and M.J. Chao: Effect of water species on the phonon modes in orthorhombic Y2(MoO4)3 revealed by Raman spectroscopy. J. Phys. Chem. C 112, 6577 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    A.K. Tyagi, S.N. Achary, and M.D. Mathews: Phase transition and negative thermal expansion in A2(Mo4)3 system (A=Fe3+, Cr3+ and Al3+). J. Alloy. Compd. 339, 207 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    Z.Y. Li, W.B. Song, and E.J. Liang: Phase transition, and crystal water of Fe2−xYxMo3O12. J. Phys. Chem. C 115, 17806 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Q.J. Li, B.H. Yuan, W.B. Song, E.J. Liang, and B. Yuan: The phase transition, hygroscopicity, and thermal expansion properties of Yb2−xAlxMo3O12. Chin. Phys. B 21(4), 432 (2012).

    Google Scholar 

  20. 20.

    A.W. Sleight and L.H. Brixner: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7, 172 (1973).

    CAS  Article  Google Scholar 

  21. 21.

    B.A. Marinkovic, P.M. Jardim, M. Ari, R.R. Avillez, F. Rizzo, and F.F. Ferreira: Low positive thermal expansion in HfMgMo3O12. Phys. Status Solidi B 245, 2514 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    T. Suzuki and A. Omote: Negative thermal expansion in (HfMg)(WO4)3J. Am. Ceram. Soc. 87(7), 1365 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    A.M. Gindhart, C. Linda, and M. Green: Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. J. Mater. Res. 23, 210 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    T. Suzuki and A. Omote: Zero thermal expansion in (Al2 x(HfMg)1−x)(WO4)3. J. Am. Ceram. Soc. 89, 691 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    T. Varga, J.L. Moats, S.V. Ushakov, and A. Navrotsky: Thermochemistry of A2M3O12 negative thermal expansion materials. J. Mater. Res. 22, 2512 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    J.M. Kimberly, P.R. Carl, B. Mario, A.M. Bojan, P. Luciana, and A.W. Mary: Near-zero thermal expansion in In(HfMg)0.5Mo3O12. J. Am. Ceram. Soc. 96(2), 561 (2013).

    Article  Google Scholar 

  27. 27.

    W.B. Song, E.J. Liang, X.S. Liu, Z.Y. Li, B.H. Yuan, and J.Q. Wang: A negative thermal expansion material of ZrMgMo3O12. Chin. Phys. Lett. 30(12), 126502 (2013).

    Article  Google Scholar 

  28. 28.

    J. Peng, M.M. Wu, H. Wang, Y.M. Hao, Z. Hua, Z.X. Yu, D.F. Chen, R. Kiyanagi, J.S. Fieramosca, S. Short, and J. Jorgensen: Structures and negative thermal expansion properties of solid solutions YxNd2− xW3O12 (x = 0.0–1.0, 1.6–2.0). J. Alloy. Compd. 453, 49 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    T.A. Mary and A.W. Sleight: Bulk thermal expansion for tungstate and molybdates of the type A2M3O12. J. Mater. Res. 14(3), 912 (1999).

    CAS  Article  Google Scholar 

  30. 30.

    L. Wang, P.F. Yuan, F. Wang, Q. Sun, E.J. Liang, and Y. Jia: Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12. Mater. Res. Bull. 48, 2724 (2013).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Science Foundation of China (No. 10974183, 11104252), by the Ministry of Education of China (No. 20114101110003), by the fund for Science & Technology innovation team of Zhengzhou (No. 112PCXTD337), and by the postdoctoral research sponsorship in Henan province (Grant No. 2011002).

Author information



Corresponding author

Correspondence to Erjun Liang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, W., Yuan, B., Liu, X. et al. Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+. Journal of Materials Research 29, 849–855 (2014). https://doi.org/10.1557/jmr.2014.63

Download citation