Facile synthesis of highly ordered mesoporous chromium–alumina catalysts with improved catalytic activity and stability


The highly ordered mesoporous chromium–alumina catalysts (denoted as OMCA(x)) with different nAl/nCr ratios of 10 and 20 have been successfully synthesized via an evaporation-induced self-assembly (EISA) pathway associated with thermal treatment and were applied to the liquid phase oxidation of cyclohexane with hydrogen peroxide (H2O2) as an oxidant. For comparison studies, a chromium catalyst with the nAl/nCr ratio of 10 supported on an ordered mesoporous alumina support [denoted as Cr/OMA(10)] was also prepared by an incipient wetness impregnation (IWI) method. Although both kinds of catalysts retained a unidimensionally ordered mesoporous structure, textural properties of the catalysts were significantly affected by the preparation method. The characteristic results from XRD, N2 adsorption, TEM, UV-Vis, 27Al MNS NMR, and H2-TPR showed that the OMCA(x) catalysts exhibited much more highly ordered hexagonal mesostructure, narrower pore-size distribution, higher Brunauer-Emmett-Teller surface area and pore volume, and more homogeneous distribution of Cr species in mesoporous alumina framework in the form of tetrahedrally coordinated hexavalent Cr-oxide moieties than those of Cr/OMA(10) synthesized by an IWI method. In addition, in comparison with Cr/OMA(10), OMCA(x) catalysts showed higher catalytic activity and stability for the liquid phase oxidation of cyclohexane.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    L. Liu, Y. Li, H.B. Wei, M. Dong, J.G. Wang, A.M.Z. Slawin, J.P. Li, J.X. Dong, and R.E. Morris: Ionothermal synthesis of zirconium phosphates and their catalytic behavior in the selective oxidation of cyclohexane. Angew. Chem., Int. Ed. Engl. 48, 2206 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Wang, H.R. Li, J. Yao, X.C. Wang, and M. Antonietti: Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2, 446 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    J.B. Xia, K.W. Cormier, and C. Chen: A highly selective vanadium catalyst for benzylic C-H oxidation. Chem. Sci. 3, 2240 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    B.P.C. Hereijgers and B.M. Weckhuysen: Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. J. Catal. 270, 16 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    H. Yu, F. Peng, J. Tan, X.W. Hu, H.J. Wang, J.A. Yang, and W.X. Zheng: Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angew. Chem., Int. Ed. Engl. 50, 3978 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    J.L. Gu, Y. Huang, S.P. Elangovan, Y.S. Li, W.R. Zhao, I. Toshio, Y. Yamazaki, and J.L. Shi: Highly dispersed copper species within SBA-15 introduced by the hydrophobic core of a surfactant micelle as a carrier and their enhanced catalytic activity for cyclohexane oxidation. J. Phys. Chem. C 115, 21211 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    B.L. Conley, W.J. Tenn, K.J.H. Young, S.K. Ganesh, S.K. Meier, V.R. Ziatdinov, O. Mironov, J. Oxgaard, J. Gonzales, W.A. Goddard, and R.A. Periana: Design and study of homogeneous catalysts for the selective, low temperature oxidation of hydrocarbons. J. Mol. Catal. A: Chem. 251, 8 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    N. Mizuno and K. Kamata: Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 255, 2358 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    N. Dietl, T. Wende, K. Chen, L. Jiang, M. Schlangen, X.H. Zhang, K.R. Asmis, and H. Schwarz: Structure and chemistry of the heteronuclear oxo-cluster [VPO4](center dot+): A model system for the gas-phase oxidation of small hydrocarbons. J. Am. Chem. Soc. 135, 3711 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    H.H. Zhao, H.L. Song, and L.J. Chou: Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metal-organic framework. Microporous Mesoporous Mater. 181, 182 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    A.R. Silva, T. Mourao, and J. Rocha: Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands. Catal. Today 203, 81 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    X.X. Zhou, H.R. Chen, X.Z. Cui, Z.L. Hua, Y. Chen, Y. Zhu, Y.D. Song, Y. Gong, and J.L. Shi: A facile one-pot synthesis of hierarchically porous Cu(I)-ZSM-5 for radicals-involved oxidation of cyclohexane. Appl. Catal. A: Gen. 451, 112 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    W.F. Wu, X.L. He, Z.H. Fu, Y.C. Liu, Y.L. Wang, X.L. Gong, X.L. Deng, H.T. Wu, Y.H. Zou, N.Y. Yu, and D.L. Yin: Metal chlorides-catalyzed selective oxidation of cyclohexane by molecular oxygen under visible light irradiation. J. Catal. 286, 6 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    B.R.S. Lemos, D. CarvalhoDa-Silva, D.Z. Mussi, L.D. Santos, M.M. da Silva, M. de Carvalho, J.S. Reboucas, and Y.M. Idemori: High selectivity toward cyclohexanol in oxidation of cyclohexane using manganese aminophenylporphyrins as catalysts. Appl. Catal. A: Gen. 400, 111 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    R. Ohno, K. Taniya, S. Tsuruya, Y. Ichihashi, and S. Nishiyama: Oxidation of cyclohexane with hydrogen peroxide over beta-zeolites with various Si/Al ratios. Catal. Today 203, 60 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, J.S. Zhang, X.C. Wang, M. Antonietti, and H.R. Li: Boron- and fluorine-containing mesoporous carbon nitride polymers: Metal-free catalysts for cyclohexane oxidation. Angew. Chem., Int. Ed. 49, 3356 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    F. Adam, P. Retnam, and A. Iqbal: The complete conversion of cyclohexane into cyclohexanol and cyclohexanone by a simple silica-chromium heterogeneous catalyst. Appl. Catal. A: Gen. 357, 93 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, and C.H. Yan: Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability. J. Am. Chem. Soc. 130, 3465 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    J.P. Dacquin, J. Dhainaut, D. Duprez, S. Royer, A.F. Lee, and K. Wilson: An efficient route to highly organized, tunable macroporous-mesoporous alumina. J. Am. Chem. Soc. 131, 12896 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    W.Q. Cai, J.G. Yu, C. Anand, A. Vinu, and M. Jaroniec: Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties. Chem. Mat. 23, 1147 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Q. Liu, A.Q. Wang, X.D. Wang, and T. Zhang: Ordered crystalline alumina molecular sieves synthesized via a nanocasting route. Chem. Mater. 18, 5153 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Z.X. Wu, Q.A. Li, D. Peng, P.A. Webley, and D.Y. Zhao: Ordered mesoporous crystalline gamma-Al(2)O(3) with variable architecture and porosity from a single hard template. J. Am. Chem. Soc. 132, 12042 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Z.X. Li, F.B. Shi, L.L. Li, T. Zhang, and C.H. Yan: A facile route to ordered mesoporous-alumina-supported catalysts, and their catalytic activities for CO oxidation. Phys. Chem. Chem. Phys. 13, 2488 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Q. Yuan, H.H. Duan, L.L. Li, Z.X. Li, W.T. Duan, L.S. Zhang, W.G. Song, and C.H. Yan: Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina. Adv. Mater. 22, 1475 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Bang, S.J. Han, J.G. Seo, M.H. Youn, J.H. Song, and I.K. Song: Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel-alumina catalyst. Int. J. Hydrogen Energy 37, 17967 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    X.Y. Wang, D.H. Pan, M. Guo, M. He, P.Y. Niu, and R.F. Li: Facile synthesis of highly ordered mesoporous alumina with high thermal and hydrothermal stability using zirconia as promoter. Mater. Lett. 97, 27 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    F. Rashidi, A.N. Kharat, A.M. Rashidi, E. Lima, V. Lara, and J.S. Valente: Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods. Eur. J. Inorg. Chem. 10, 1544 (2010).

    Article  Google Scholar 

  28. 28.

    R.L. Puurunen and B.M. Weckhuysen: Spectroscopic study on the irreversible deactivation of chromia/alumina dehydrogenation catalysts. J. Catal. 210, 418 (2002).

    CAS  Article  Google Scholar 

  29. 29.

    B.M. Weckhuysen, A.A. Verberckmoes, A.L. Buttiens, and R.A. Schoonheydt: Diffuse reflectance spectroscopy study of the thermal genesis and molecular structure of chromium-supported catalysts. J. Phys. Chem. 98, 579 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    L. Zhang, Y. Zhao, H. Dai, H. He, and C.T. Au: A comparative investigation on the properties of Cr-SBA-15 and CrOx/SBA-15. Catal. Today 131, 42 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    B.M. Weckhuysen, A.A. Verberckmoes, A.R.D. Baets, and R.A. Schoonheydt: Diffuse reflectance spectroscopy of supported chromium oxide catalysts: A self-modeling mixture analysis. J. Catal. 166, 160 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    S.D. Rossi, M.P. Casaletto, G. Ferraris, A. Cimino, and G. Minelli: Chromia/zirconia catalysts with Cr content exceeding the monolayer: A comparison with chromia/alumina and chromia/silica for isobutane dehydrogenation. Appl. Catal. A: Gen. 167, 257 (1998).

    Article  Google Scholar 

  33. 33.

    Q. Liu, A.Q. Wang, X.D. Wang, and T. Zhang: Mesoporous γ-alumina synthesized by hydro-carboxylic acid as structure-directing agent. Microporous Mesoporous Mater. 92, 10 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    P.J. Chupas and C.P. Grey: Surface modification of fluorinated aluminas: Application of solid state NMR spectroscopy to the study of acidity and surface structure. J. Catal. 224, 69 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    D. Shee and A. Sayari: Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Appl. Catal. A: Gen. 389, 155 (2010).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (51172154), the China Postdoctoral Science Foundation (2012M510783), the Shanxi Province Science Foundation for Youths (2012021006-2 and 2013021008-3), and the Science and Technology Project of Shanxi Province (20130313001-3).

Author information



Corresponding author

Correspondence to Ruifeng Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, D., Guo, M., He, M. et al. Facile synthesis of highly ordered mesoporous chromium–alumina catalysts with improved catalytic activity and stability. Journal of Materials Research 29, 811–819 (2014). https://doi.org/10.1557/jmr.2014.43

Download citation