Determination of the energy release rate in the interfacial delamination of silicon nitride film on gallium arsenide substrate via nanoindentation


Nanoindentation was performed to study the interfacial delamination of SiN/GaAs film/substrate structures, and to determine the adhesion properties of the interface. A sequential dual-indentation approach was developed and the tests were carefully designed to induce interfacial delamination, but avoid the occurrence of the film’s through-thickness fracture or buckling. A clamped circular plate model was used to approximate the elastic deflection of the detached film and hence the delamination area. The Griffith energy balance was then used to compute the energy release associated with the delamination. The energy release rate, Gin, calculated was found to be independent on the testing conditions, which agrees with the fundamental assumption of the Griffith energy concept.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    F.W. Smith, H.Q. Le, V. Diadiuk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang: Picosecond GaAs-based photoconductive optoelectronic detectors. Appl. Phys. Lett. 54 (10), 890 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    D.K.W. Lam and R.I. Macdonald: GaAs optoelectronic mixer operation at 4.5 GHz. IEEE Trans. Electron Devices 31 (12), 1766 (1984).

    Article  Google Scholar 

  3. 3.

    I. Hallakoun, I. Toledo, J. Kaplun, G. Bunin, M. Leibovitch, and Y. Shapira: Critical dimension improvement of plasma enhanced chemical vapor deposition silicon nitride thin films in GaAs devices. Mater. Sci. Eng., B 102 (1–3), 352 (2003).

    Article  CAS  Google Scholar 

  4. 4.

    M. Gioti, S. Logothetidis, and C. Charitidis: Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl. Phys. Lett. 73 (2), 184 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    S.Y. Chang, H.C. Tsai, J.Y. Chang, S.J. Lin, and Y.S. Chang: Analyses of interface adhesion between porous SiOCH low-k film and SiCN layers by nanoindentation and nanoscratch tests. Thin Solid Films 516 (16), 5334 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    E.Y. Chang, G.T. Cibuzar, J.M. Vanhove, R.M. Nagarajan, and K.P. Pande: GaAs device passivation using sputtered silicon-nitride. Appl. Phys. Lett. 53 (17), 1638 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    K.B. Yeap, K.Y. Zeng, H.Y. Jiang, L. Shen, and D.Z. Chi: Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique. J. Appl. Phys. 101 (12), 123531 (2007).

    Article  CAS  Google Scholar 

  8. 8.

    R.K. Singh, M.T. Tilbrook, Z.H. Xie, A. Bendavid, P.J. Martin, P. Munroe, and M. Hoffman: Contact damage evolution in diamondlike carbon coatings on ductile substrates. J. Mater. Res. 23 (1), 27 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    L.G. Rosenfeld, J.E. Ritter, T.J. Lardner, and M.R. Lin: Use of the microindentation technique for determining interfacial fracture energy. J. Appl. Phys. 67 (7), 3291 (1990).

    Article  Google Scholar 

  10. 10.

    A.J. Perry: Scratch adhesion testing of hard coatings. Thin Solid Films 107 (2), 167 (1983).

    CAS  Article  Google Scholar 

  11. 11.

    A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50 (3), 441 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    S. Zhang, Y.S. Wang, X.T. Zeng, K.A. Khor, W.J. Weng, and D.E. Sun: Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 516 (16), 5162 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    R. Jacobsson: Measurement of the adhesion of thin films. Thin Solid Films 34 (2), 191 (1976).

    CAS  Article  Google Scholar 

  14. 14.

    R. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61 (1), 141 (1998).

    Article  Google Scholar 

  15. 15.

    S. Zhang and X.M. Zhang: Toughness evaluation of hard coatings and thin films. Thin Solid Films 520 (7), 2375 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    B.R. Lawn, A.G. Evans, and D.B. Marshall: Elastic-plastic indentation damage in ceramics-the medium-radial crack system. J. Am. Ceram. Soc. 63 (9–10), 574 (1980).

    CAS  Article  Google Scholar 

  17. 17.

    D.B. Marshall, S.S. Chiang, A.G. Evans, and B.R. Lawn: Elastic-plastic indentation in ceramics-the lateral crack system. Am. Ceram. Soc. Bull. 60 (3), 384 (1981).

    Google Scholar 

  18. 18.

    J. Alvarado-Rivera, J. Muñoz-Saldaña, and R. Ramírez-Bon: Determination of fracture toughness and energy dissipation of SiO2-poly(methyl metacrylate) hybrid films by nanoindentation. Thin Solid Films 519 (16), 5528 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    H.T. Xie and H. Huang: Characterization of the interfacial strength of SiNx/GaAs film/substrate systems using energy balance in nanoindentation. J. Mater. Res. 28 (22), 3137 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    C. Anthony and A.C. Fischer-Cripps: Nanoindentation (Springer-Verlag, New York, 2004).

    Google Scholar 

  21. 21.

    S.V. Hainsworth, M.R. McGurk, and T.F. Page: The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 102 (1–2), 97 (1998).

    CAS  Article  Google Scholar 

  22. 22.

    P.J. Wei, W.L. Liang, C.F. Ai, and J.F. Lin: A new method for determining the strain energy release rate of an interface via force-depth data of nanoindentation tests. Nanotechnology 20 (2), 025701 (2009).

    Article  CAS  Google Scholar 

  23. 23.

    P.J. Wei, S.B. Chio, W.L. Liang, and J.F. Lin: Determining buckling strain energy release rate through indentation-induced delamination. Thin Solid Films 519 (15), 4889 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    J.J. Chen and S.J. Bull: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44 (3), 034001 (2011).

    Article  CAS  Google Scholar 

  25. 25.

    J.J. Chen and S.J. Bull: Assessment of the adhesion of ceramic coatings. Adv. Sci. Technol. 45, 1299 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    J. Chen and S.J. Bull: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D: Appl. Phys. 40 (18), 5401 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    M.Y. Lu, H.T. Xie, H. Huang, J. Zou, and Y.H. He: Nanoindentation induced delamination of PECVD silicon nitride thin film on GaAs substrate. J. Mater. Res. 28 (8), 1047 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    S-J. Cho, K-R. Lee, K. Yong Eun, J. Hee Hahn, and D-H. Ko: Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films. Thin Solid Films 341 (1–2), 207 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19 (1), 3 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawn, Y. Liu, X.Z. Hu, J.M. Dell, and L. Faraone: Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng., A 435, 453 (2006).

    Article  CAS  Google Scholar 

  31. 31.

    H. Huang, K. Winchester, Y. Liu, X.Z. Hu, C.A. Musca, J.M. Dell, and L. Faraone: Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filters. J. Micromech. Microeng. 15 (3), 608 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    Y.G. Jung, B.R. Lawn, M. Martyniuk, H. Huang, and X.Z. Hu: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19 (10), 3076 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 78 (21), 3235 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    S.J. Lloyd, J.M. Molina-Aldareguia, and W.J. Clegg: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16 (12), 3347 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1895).

    Google Scholar 

  36. 36.

    J.J. Chen: Indentation-based methods to assess fracture toughness for thin coatings. J. Phys. D: Appl. Phys. 45 (20), (2012).

    Google Scholar 

  37. 37.

    L. Ma, D.J. Morris, S.L. Jennerjohn, D.F. Bahr, and L.E. Levine: The role of probe shape on the initiation of metal plasticity in nanoindentation. Acta Mater. 60 (12), 4729 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    J. Mayer, L.A. Giannuzzi, T. Kamino, and J. Michael: TEM sample preparation and FIB-induced damage. MRS Bull. 32 (5), 400 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    H. Bei, S. Shim, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91 (11), 111915 (2007).

    Article  CAS  Google Scholar 

  40. 40.

    P. Pobedinskas, J-C. Bolsée, W. Dexters, B. Ruttens, V. Mortet, J. D’Haen, J.V. Manca, and K. Haenen: Thickness dependent residual stress in sputtered AlN thin films. Thin Solid Films 522 (0), 180 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    X.C. Zhang, C.J. Liu, F.Z. Xuan, Z.D. Wang, and S.T. Tu: Effect of residual stresses on the strength and fracture energy of the brittle film: Multiple cracking analysis. Comput. Mater. Sci. 50 (1), 246 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    S. Nazarpour and A. Cirera: Variation of adhesive force at the interface of Pd and SrTiO3 as a consequence of residual stresses. J. Phys. D: Appl. Phys. 44 (3), 034002 (2011).

    Article  CAS  Google Scholar 

  43. 43.

    A.A. Volinsky, J.B. Vella, and W.W. Gerberich: Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429 (1–2), 201 (2003).

    CAS  Article  Google Scholar 

  44. 44.

    A.G. Evans and J.W. Hutchinson: On the mechanics of delamination and spalling in compressed films. Int. J. Solids Struct. 20 (5), 455 (1984).

    Article  Google Scholar 

  45. 45.

    A.G. Evans and J.W. Hutchinson: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43 (7), 2507 (1995).

    CAS  Article  Google Scholar 

  46. 46.

    V.K. Khanna: Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. J. Phys. D: Appl. Phys. 44 (3), (2011).

    Google Scholar 

Download references


The authors would like to acknowledge the financial support of WIN Semiconductors Co. and Australian Research Council (ARC). This work was financially supported by ARC under the Future Fellow Program.

Author information



Corresponding author

Correspondence to Han Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, M., Huang, H. Determination of the energy release rate in the interfacial delamination of silicon nitride film on gallium arsenide substrate via nanoindentation. Journal of Materials Research 29, 801–810 (2014).

Download citation