In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries


In the work, an in situ chemical synthesis approach has been developed to fabricate SnO2/reduced graphene oxide nanocomposites in ethanol solution. X-ray diffraction, x-ray photoelectron, Fourier transform infrared and Raman spectrum revealed the formation of SnO2/reduced graphene oxide nanocomposites. Scanning electron microscopy and transmission electron microscopy showed that SnO2 nanoparticles had a crystal size of about 3–4 nm and homogeneously distributed on reduced graphene oxide matrix. The electrochemical performances of the SnO2/reduced graphene oxide nanocomposites as anode materials were measured by the galvanostatic charge/discharge cycling. The results indicated that as-synthesized SnO2/reduced graphene oxide nanocomposites had a reversible lithium storage capacity of 1051 mAh/g and an enhanced cyclability, which can be attributed to increased electrode conductivity and buffer effect to volume change in the presence of a percolated reduced graphene oxide network embedded into the metal oxide electrodes.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    S.M. Paek, E.J. Yoo, and I. Honma: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72 (2008).

    Article  Google Scholar 

  2. 2.

    H. Buqa, D. Goers, M. Holzapfel, M.E. Spah, and P. Novák: High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, 474 (2005).

    Article  Google Scholar 

  3. 3.

    N.N. Akl, O. Trofymluk, X. Qi, J.Y. Kim, F.E. Osterloh, and A. Navrotsky: A nanowire-nanoparticle cross-linking approach to highly porous electrically conducting solids. Angew. Chem. Int. Ed. 118, 3735 (2006).

    Article  Google Scholar 

  4. 4.

    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    C.K. Chan, X.F. Zhang, and Y. Cui: High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    D.W. Kim, I.S. Hwang, S.J. Kwon, H.Y. Kang, K.S. Park, Y.J. Choi, K.J. Choi, and J.G. Park: Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7, 3041 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Wang, J.Y. Lee, and H.C. Zeng: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Y.L. Liu, H.F. Yang, Y. Yang, Z.M. Liu, G.L. Shen, and R.Q. Yu: Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes. Thin Solid Films 497, 355 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    W.Q. Han and A. Zettl: Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, and D. Zhao: Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16, 1432 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Z. Wen, Q. Wang, Q. Zhang, and J. Li: In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17, 2772 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Y.B. Fu, R.B. Ma, Y. Shu, Z. Cao, and X.H. Ma: Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater. Lett. 63, 1946 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, and J. Zhang: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Li, L. Tang, and J. Li: Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846 (2009).

    Article  Google Scholar 

  15. 15.

    D.H. Wang, R. Kou, D.W. Choi, Z.G. Yang, Z.M. Nie, J. Li, L.V. Saraf, D.H. Hu, J.G. Zhang, G.L. Graff, J. Liu, M.A. Pope, and I.A. Aksay: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang: In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11, 1849 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Wang, H.C. Zeng, and J.Y. Lee: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18, 645 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    J.C. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth: The structure of suspended graphene sheets. Nature 446, 60 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguyen, and R.S. Ruoff: Graphene-silica composite thin films as transparent conductors. Nano Lett. 7, 1888 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    X. Wang, L. Zhi, and K. Müllen: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    S. Gilje, S. Han, M. Wang, K.L. Wang, and R.B. Kaner: A chemical route to graphene for device applications. Nano Lett. 7, 3394 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, and G. Shi: Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46, 4740 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    H. Yang, Y. Hu, A. Tang, S. Jin, and G. Qiu: Synthesis of tin oxide nanoparticles by mechanochemical reaction. J. Alloys Compd. 363, 276 (2004).

    Article  Google Scholar 

  25. 25.

    G. An, N. Na, X. Zhang, Z. Miao, S. Miao, K. Ding, and Z. Liu: SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: Highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology 18, 435707 (2007).

    Article  Google Scholar 

  26. 26.

    S. Stankovich, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    O. Akhavan: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, and C.A. Ventrice, Jr.: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    O. Akhavan: Graphene nanomesh by ZnO nanorod photocatalysts. ACS nano 4, 4174 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    F. Tuinstra and J.L. Koenig: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).

    CAS  Article  Google Scholar 

  31. 31.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    K.T. Lee, J.C. Lytle, N.S. Ergang, S.M. Oh, and A. Stein: Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15, 547 (2005).

    CAS  Article  Google Scholar 

Download references


The work was supported by the Natural Science Foundation of China (61174011, 11275121, 21241002, and 21371116), Innovation Program of Shanghai Municipal Education Commission (12YZ013), Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (12CS02), and State Key Laboratory of Pollution Control and Resource Reuse Foundation, Tongji University (PCRRF12003).

Author information



Corresponding authors

Correspondence to Bin Dong or Zheng Jiao.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, H., Xu, P., Ni, Y. et al. In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. Journal of Materials Research 29, 617–624 (2014).

Download citation