The effect of POSS-based block copolymer as compatibilizer on POSS/epoxy composites

Abstract

In this study, a novel hybrid block copolymer containing POSS (BCP), poly(methacrylisobutyl-POSS)- b -poly(methylmethacrylate) (PMAiBuPOSS- b -PMMA) was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The structure and molecular weight were characterized via 1H NMR and GPC. BCP was creatively used as the compatibilizer to overcome the bad compatibility of epoxy and POSS in their blend system. SEM and dynamic mechanical thermal analyses (DMTA) were used to observe the surface morphology and thermal–mechanical behaviors of the resultant products. We found that the amount of microaggregation domains of POSS decreased, while the nano ones increased, when BCP content increased. All the aggregation domains were distributed in epoxy matrix uniformly at nanoscale with the addition of 10 phr BCP and 5 phr POSS monomers. The results indicated that BCP could effectively improve the compatibility between epoxy resin and POSS owing to its amphiphilicity in DGEBA. The fracture behavior of products transformed from brittle fracture to ductile fracture gradually with the increase of BCP, whereas the Tg and E′ decreased.

This is a preview of subscription content, access via your institution.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    S-W. Kuo and F-C. Chang: POSS related polymer nanocomposites. Prog. Polym. Sci. 36(12), 1649 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    B.X. Fu, M.Y. Gelfer, B.S. Hsiao, S. Phillips, B. Viers, R. Blanski, and P. Ruth: Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 44(5), 1499 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Y-J. Lee, S-W. Kuo, W-J. Huang, H-Y. Lee, and F-C. Chang: Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. J. Polym. Sci., Part B: Polym. Phys. 42(6), 1127 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    E.S. Cozza, O. Monticelli, and E. Marsano: Electrospinning: A novel method to incorporate POSS into a polymer matrix. Macromol. Mater. Eng. 295(9), 791 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    E.T. Kopesky, T.S. Haddad, R.E. Cohen, and G.H. McKinley: Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37(24), 8992 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    Y-C. Yen, Y-S. Ye, C-C. Cheng, H-M. Chen, H-S. Sheu, and F-C. Chang: Effect of LiClO4 on the thermal and morphological properties of organic/inorganic polymer hybrids. Polymer 49(17), 3625 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    M. Shibata, R. Horie, and W. Yoneta: Intermolecular interaction of supramolecular organic–inorganic hybrid composites of sulfonated polystyrene and oligomeric silsesquioxane possessing pyridyl groups. Polymer 51(24), 5764 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Y-C. Sheen, C-H. Lu, C-F. Huang, S-W. Kuo, and F-C. Chang: Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49(18), 4017 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    E.G. Shockey, A.G. Bolf, P.F. Jones, J.J. Schwab, K.P. Chaffee, T.S. Haddad, and J.D. Lichtenhan: Functionalized polyhedral oligosilsesquioxane (POSS) macromers: New graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS–siloxane triblocks. Appl. Organomet. Chem. 13(4), 311 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    T. Haddad, B. Viers, and S. Phillips: Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J. Inorg. Organomet. Polym. 11(3), 155 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    P.T. Mather, H.G. Jeon, A. Romo-Uribe, T.S. Haddad, and J.D. Lichtenhan: Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32(4), 1194 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    M.E. Wright, B.J. Petteys, A.J. Guenthner, S. Fallis, G.R. Yandek, S.J. Tomczak, T.K. Minton, and A. Brunsvold: Chemical modification of fluorinated polyimides: New thermally curing hybrid polymers with POSS. Macromolecules 39(14), 4710 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    J. Choi, J. Harcup, A.F. Yee, Q. Zhu, and R.M. Laine: Organic/inorganic hybrid composites from cubic silsesquioxanes. J. Am. Chem. Soc. 123(46), 11420 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    S. Wu, T. Hayakawa, M-A. Kakimoto, and H. Oikawa: Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules 41(10), 3481 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    M.E. Wright, D.A. Schorzman, F.J. Feher, and R-Z. Jin: Synthesis and thermal curing of aryl-ethynyl-terminated coPOSS imide oligomers: New inorganic/organic hybrid resins. Chem. Mater. 15(1), 264 (2002).

    Article  CAS  Google Scholar 

  16. 16.

    Y.L. Liu, G.H. Hsiue, R.H. Lee, and Y.S. Chiu: Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents. J. Appl. Polym. Sci. 63(7), 895 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    X. Liu, W. Xin, and J. Zhang: Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresour. Technol. 101(7), 2520 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    J. Hodgkin, G. Simon, and R. Varley: Thermoplastic toughening of epoxy resins: A critical review. Polym. Adv. Technol. 9(1), 3 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    D. Hourston and J. Lane: The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 33(7), 1379 (1992).

    CAS  Article  Google Scholar 

  20. 20.

    B.J. Bauer, D.W. Liu, C.L. Jackson, and J.D. Barnes: Epoxy/SiO2 interpenetrating polymer networks. Polym. Adv. Technol. 7(4), 333 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    K. Hsieh and J. Han: Graft interpenetrating polymer networks of polyurethane and epoxy. I. Mechanical behavior. J. Polym. Sci., Part B: Polym. Phys. 28(5), 623 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    P. Rosso, L. Ye, K. Friedrich, and S. Sprenger: A toughened epoxy resin by silica nanoparticle reinforcement. J. Appl. Polym. Sci. 100(3), 1849 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, and S. Sprenger: Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    R.A. Pearson and A.F. Yee: Toughening mechanisms in elastomer-modified epoxies. J. Mater. Sci. 21(7), 2475 (1986).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Ni and S. Zheng: Nanostructured thermosets from epoxy resin and an organic–inorganic amphiphile. Macromolecules 40(19), 7009 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Y-C. Chiu, L. Riang, I.C. Chou, C-C.M. Ma, C-L. Chiang, and C-C. Yang: The POSS side chain epoxy nanocomposite: Synthesis and thermal properties. J. Polym. Sci., Part B: Polym. Phys. 48(6), 643 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Y-Z. Wang, W-Y. Chen, C-C. Yang, C-L. Lin, and F-C. Chang: Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. J. Polym. Sci., Part B: Polym. Phys. 45(4), 502 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    Z. Zhang, G. Liang, J. Wang, and P. Ren: Epoxy/POSS organic–inorganic hybrids: Viscoelastic, mechanical properties and micromorphologies. Polym. Compos. 28(2), 175 (2007).

    Article  CAS  Google Scholar 

  29. 29.

    J. Fu, L. Shi, Y. Chen, S. Yuan, J. Wu, X. Liang, and Q. Zhong: Epoxy nanocomposites containing mercaptopropyl polyhedral oligomeric silsesquioxane: Morphology, thermal properties, and toughening mechanism. J. Appl. Polym. Sci. 109(1), 340 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    X. Wang, Y. Hu, L. Song, W. Xing, and H. Lu: Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J. Polym. Sci., Part B: Polym. Phys. 48(6), 693 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Deng, J. Bernard, P. Alcouffe, J. Galy, L. Dai, and J-F. Gérard: Nanostructured hybrid polymer networks from in situ self-assembly of RAFT-synthesized POSS-based block copolymers. J. Polym. Sci., Part A: Polym. Chem. 49(20), 4343 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, and S.H. Thang: Living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT process. Macromolecules 31(16), 5559 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    S. Ritzenthaler, F. Court, E. Girard-Reydet, L. Leibler, and J.P. Pascault: ABC triblock copolymers/epoxy−diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 36(1), 118 (2002).

    Article  CAS  Google Scholar 

  34. 34.

    R. Maeda, T. Hayakawa, M. Tokita, R. Kikuchi, J. Kouki, M-a. Kakimoto, and H. Urushibata: Double liquid crystalline side-chain type block copolymers for hierarchically ordered nanostructures: Synthesis and morphologies in the bulk and thin film. React. Funct. Polym. 69(7), 519 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    D. Verchère, H. Sautereau, J.P. Pascault, S.M. Moschiar, C.C. Riccardi, and R.J.J. Williams: Miscibility of epoxy monomers with carboxyl-terminated butadiene-acrylonitrile random copolymers. Polymer 30(1), 107 (1989).

    Article  Google Scholar 

  36. 36.

    B. Jaffrennou, J. Portal, F. Méchin, and J-P. Pascault: Nanostructured poly(urethane)s and poly(urethane-urea)s from reactive solutions of poly[styrene-b-butadiene-b-(methyl methacrylate)]-triblock copolymers. Eur. Polym. J. 44(11), 3439 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    S. Ritzenthaler, F. Court, L. David, E. Girard-Reydet, L. Leibler, and J.P. Pascault: ABC triblock copolymers/epoxy−diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 35(16), 6245 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    H. Liu, S. Zheng, and K. Nie: Morphology and thermomechanical properties of organic–inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 38(12), 5088 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    D. Zhang and D. Jia: Toughness and strength improvement of diglycidyl ether of bisphenol-A by low viscosity liquid hyperbranched epoxy resin. J. Appl. Polym. Sci. 101(4), 2504 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    I. Jones, Y. Zhou, S. Jeelani, and J. Mabry: Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy. eXPRESS Polym. Lett. 2(7), 494 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    P.M. Remiro, C. Marieta, C.C. Riccardi, and I. Mondragon: Influence of curing conditions on the morphologies of a PMMA-modified epoxy matrix. Polymer 42(25), 09909 (2001).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (51273164 and U1205113), the Fundamental Research Funds for the Central Universities (2012121031), and NCETFJ.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yiting Xu or Lizong Dai.

Additional information

Contributing Editor: Linda S. Schadler

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, C., Chen, M. et al. The effect of POSS-based block copolymer as compatibilizer on POSS/epoxy composites. Journal of Materials Research 30, 266–277 (2015). https://doi.org/10.1557/jmr.2014.364

Download citation