Physical response of gold nanoparticles to single self-ion bombardment


The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (∼1 nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. Similar shape changes were observed in the 20 nm NPs, while the 5 nm NPs were transiently melted or explosively broken apart.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    M.C. Daniel and D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    M.A. Nastasi, J.W. Mayer, and J.K. Hirvonen: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, New York, 1996); pp. xxvi.

    Google Scholar 

  3. 3.

    J.R. Schwank, M.R. Shaneyfelt, and P.E. Dodd: Radiation hardness assurance testing of microelectronic devices and integrated circuits: Radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Trans. Nucl. Sci. 60(3), 2074 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    O. Auciello and R. Kelly: Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Elsevier Science Publishers, New York, 1984); pp. xvii.

    Google Scholar 

  5. 5.

    O. Dmitrieva, B. Rellinghaus, J. Kastner, M.O. Liedke, and J. Fassbender: Ion beam induced destabilization of icosahedral structures in gas phase prepared FePt nanoparticles. J. Appl. Phys. 97(10), 10N112 (2005).

    Article  Google Scholar 

  6. 6.

    G. Rizza, H. Cheverry, T. Gacoin, A. Lamasson, and S. Henry: Ion beam irradiation of embedded nanoparticles: Toward an in situ control of size and spatial distribution. J. Appl. Phys. 101(1), 014321 (2007).

    Article  Google Scholar 

  7. 7.

    S. Dhara: Formation, dynamics, and characterization of nanostructures by ion beam irradiation. Crit. Rev. Solid State Mater. Sci. 32(1–2), 1 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Ramjauny, G. Rizza, S. Perruchas, T. Gacoin, and R. Botha: Controlling the size distribution of embedded Au nanoparticles using ion irradiation. J. Appl. Phys. 107(10), 104303 (2010).

    Article  Google Scholar 

  9. 9.

    D. Bufford, S.H. Pratt, T.J. Boyle, and K. Hattar: In situ TEM ion irradiation and implantation effects on Au nanoparticle morphologies. Chem. Commun. 50(57), 7593 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    A.V. Krasheninnikov and K. Nordlund: Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107(7), 071301 (2010).

    Article  Google Scholar 

  11. 11.

    K. Nordlund and F. Djurabekova: Multiscale modelling of irradiation in nanostructures. J. Comput. Electron. 13(1), 122 (2014).

    Article  Google Scholar 

  12. 12.

    R. Kissel and H.M. Urbassek: Sputtering from spherical Au clusters by energetic atom bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 293 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    S. Zimmermann and H.M. Urbassek: Sputtering of nanoparticles: Molecular dynamics study of Au impact on 20 nm sized Au nanoparticles. Int. J. Mass Spectrom. 272(1), 91 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    E.E. Zhurkin: Study of gold nanocluster sputtering under 38-keV Au ion bombardment by a classical molecular dynamics method. J. Surf. Invest.: X-Ray, Synchrotron Neutron Techn. 2(2), 193 (2008).

    Article  Google Scholar 

  15. 15.

    T.T. Jarvi and K. Nordlund: Sputtering of freestanding metal nanocrystals. Nucl. Instrum. Methods Phys. Res., Sect. B 272, 66 (2012).

    Article  Google Scholar 

  16. 16.

    T.T. Jarvi, A. Kuronen, K. Nordlund, and K. Albe: Structural modification of a multiply twinned nanoparticle by ion irradiation: A molecular dynamics study. J. Appl. Phys. 102(12), 124304 (2007).

    Article  Google Scholar 

  17. 17.

    C. Borschel and C. Ronning: Ion beam irradiation of nanostructures — A 3D Monte Carlo simulation code. Nucl. Instrum. Methods Phys. Res., Sect. B 269(19), 2133 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    U. Wiedwald, A. Klimmer, B. Kern, L. Han, H.G. Boyen, P. Ziemann, and K. Fauth: Lowering of the L1(0) ordering temperature of FePt nanoparticles by He+ ion irradiation. Appl. Phys. Lett. 90(6), 062508 (2007).

    Article  Google Scholar 

  19. 19.

    T.T. Jarvi, D. Pohl, K. Albe, B. Rellinghaus, L. Schultz, J. Fassbender, A. Kuronen, and K. Nordlund: From multiply twinned to fcc nanoparticles via irradiation-induced transient amorphization. EPL 85(2), 1 (2009).

    Article  Google Scholar 

  20. 20.

    I. Baranov, S. Kirillov, A. Novikov, V. Obnorskii, M. Toulemonde, K. Wien, S. Yarmiychuk, V.A. Borodin, and A.E. Volkov: Desorption of gold nanoclusters (2-150 nm) by 1 GeV Pb ions. Nucl. Instrum. Methods Phys. Res., Sect. B 230, 495 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    J.A. Hinks: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267(23–24), 3652 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    R.C. Birtcher, S.E. Donnelly, and S. Schlutig: Nanoparticle ejection from Au induced by single Xe ion impacts. Phys. Rev. Lett. 85(23), 4968 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    R.C. Birtcher, S.E. Donnelly, and S. Schlutig: Nanoparticle ejection from gold during ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 215(1–2), 69 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    R.C. Birtcher and S.E. Donnelly: Plastic flow induced by single ion impacts on gold. Phys. Rev. Lett. 77(21), 4374 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    G. Greaves, J.A. Hinks, P. Busby, N.J. Mellors, A. Ilinov, A. Kuronen, K. Nordlund, and S.E. Donnelly: Enhanced sputtering yields from single-ion impacts on gold nanorods. Phys. Rev. Lett. 111(6), 1 (2013).

    Article  Google Scholar 

  26. 26.

    K. Hattar, D. Bufford, and D.L. Buller: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 56–65 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Chen, R.E. Palmer, and J.P. Wilcoxon: Sintering of passivated gold nanoparticles under the electron beam. Langmuir 22(6), 2851 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh: Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71 (1996).

    CAS  Article  Google Scholar 

  29. 29.

    E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin: UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    J.F. Ziegler, M.D. Ziegler, and J.P. Biersack: SRIM — The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268(11–12), 1818 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T.D. de la Rubia, and J. Tarus: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B 57(13), 7556 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    M. Ghaly, K. Nordlund, and R.S. Averback: Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos. Mag. A 79(4), 795 (1999).

    CAS  Article  Google Scholar 

  33. 33.

    K.L. Merkle and W. Jager: Direct observation of spike effects in heavy-ion sputtering. Philos. Mag. A 44(4), 741 (1981).

    CAS  Article  Google Scholar 

Download references


The authors thank J. Hinks (University of Huddersfield), G. Tucker (Drexel University), S. House (University of Illinois at Urbana-Champaign), and T.J. Boyle, D.L. Buller, J.S. Custer, B.A. Hernadez-Sanchez, K. Jungjohann, A.N. Kinghorn, P. Lu, S.H. Pratt, and W. Wampler (Sandia National Laboratories) for their helpful assistance and discussions. The tomograms were modified using the UCSF Chimera package from the Computer Graphics Laboratory, University of California, San Francisco (supported by NIH P41 RR-01081). This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by the Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information



Corresponding author

Correspondence to Khalid Hattar.

Additional information

This paper has been selected as an Invited Feature Paper.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bufford, D.C., Hattar, K. Physical response of gold nanoparticles to single self-ion bombardment. Journal of Materials Research 29, 2387–2397 (2014).

Download citation