Modeling of the self trapping of helium and the trap mutation in tungsten using DFT and empirical potentials based on DFT


Density functional theory calculations and molecular dynamics with a recently developed potential for W–He were used to evaluate the thermal stability of helium-vacancy clusters ( as well as pure interstitial helium clusters in tungsten. The stability of such objects results from a competitive process between thermal emission of vacancies, self interstitial atoms (SIAs), and helium, depending on the helium-to-vacancy ratio in mixed clusters or helium number in pure interstitial helium clusters. We investigated in particular the ground state configurations as well as the activation barriers of self trapping and trap mutation, i.e., the emission of one SIA along with the creation of one vacancy from a vacancy-helium or pure helium object.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17


  1. 1.

    C.S. Becquart and C. Domain: The migration energy of He in W revisited by Ab initio calculations. Phys. Rev. Lett. 97, 196402 (2006).

    Article  CAS  Google Scholar 

  2. 2.

    A.S. Soltan, R. Vassen, and P. Jung: Migration and immobilization of He and H in gold and tungsten at low temperatures. J. Appl. Phys. 70, 793 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    H. Trinkaus and B.N. Singh: Helium accumulation in metals during irradiation–where do we stand?. J. Nucl. Mater. 323, 229 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Dai, G.R. Odette, and T. Yamamoto: The effects of helium in irradiated structural alloys. Compr. Nucl. Mater. 1, 141 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    K. Nordlund, C. Bjorkas, T. Ahlgren, A. Lasa, and A.E. Sand: Multiscale modelling of plasma–wall interactions in fusion reactor conditions. J. Phys. D: Appl. Phys. 47, 224018 (2014).

    Article  CAS  Google Scholar 

  6. 6.

    H. Trinkaus: Energetics and formation kinetics of helium bubbles in metals. Radiat. Eff. 78, 189 (1983).

    CAS  Article  Google Scholar 

  7. 7.

    S.T. Picraux: Defect trapping of gas atoms in metals. Nucl. Instrum. Methods 182–183, 413 (1981).

    Article  Google Scholar 

  8. 8.

    E.V. Kornelsen: Entrapment of helium ions at (100) and (110) tungsten surfaces. Can. J. Phys. 48, 2812 (1970).

    CAS  Article  Google Scholar 

  9. 9.

    A. Van Veen, L.M. Caspers, E.V. Kornelsen, R. Pastenau, A. Van Gorkum, and A. Warnaar: Vacancy creation by helium trapping at substitutional krypton in tungsten. Phys. Status Solidi 40, 235 (1977).

    Article  Google Scholar 

  10. 10.

    W.D. Wilson: Theory of small clusters of helium in metals. Radiat. Eff. 78, 11 (1983).

    CAS  Article  Google Scholar 

  11. 11.

    K.O.E. Henriksson, K. Nordlund, A. Krasheninnikov, and J. Keinonen: Difference in formation of hydrogen and helium clusters in tungsten. Appl. Phys. Lett. 87, 163113 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    C.S. Becquart and C. Domain: A density functional theory assessment of the clustering behaviour He and H in tungsten. J. Nucl. Mater. 386–388, 109 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    J.H. Evans: An interbubble fracture mechanism of blister formation on helium-irradiated metals. J. Nucl. Mater. 68, 129 (1977).

    CAS  Article  Google Scholar 

  14. 14.

    J.H. Evans: The role of implanted gas and lateral stress in blister formation mechanisms. J. Nucl. Mater. 76–77, 228 (1978).

    Article  Google Scholar 

  15. 15.

    G.W. Greenwood, A.J.E. Foreman, and D.E. Rimmer: The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiated fissile materials. J. Nucl. Mater. 4, 305 (1959).

    Article  Google Scholar 

  16. 16.

    W.R. Wampler, T. Schober, and B. Lengeler: Precipitation and trapping of hydrogen in copper. Philos. Mag. 34, 129 (1976).

    CAS  Article  Google Scholar 

  17. 17.

    J.H. Evans, A. Van Veen, and L.M. Caspers: Direct evidence for He bubble growth in Mo by the mechanism of loop punching. Scr. Metall. 15, 323 (1981).

    CAS  Article  Google Scholar 

  18. 18.

    R.J.K. Nicholson and J.M. Walls: FIM studies of the lattice damage in tungsten following low-energy helium ion bombardment. J. Nucl. Mater. 76–77, 251 (1978).

    Article  Google Scholar 

  19. 19.

    M.S. Abd El Keriem, D.P. van der Werf, and F. Pleiter: He-vacancy interaction in tungsten. Phys. Rev. B 47, 14771 (1993).

    CAS  Article  Google Scholar 

  20. 20.

    H. Iwakiri, K. Yasunaga, K. Morishita, and N. Yoshida: Microstructure evolution in tungsten during low-energy helium ion irradiation. J. Nucl. Mater. 283–287, 1134 (2000).

    Article  Google Scholar 

  21. 21.

    W.D. Wilson, C.L. Bisson, and M.I. Baskes: Self-trapping of helium in metals. Phys. Rev. B 24, 5616 (1981).

    CAS  Article  Google Scholar 

  22. 22.

    K.O.E. Henriksson, K. Nordlund, and J. Keinonen: Molecular dynamics simulations of He cluster formation in tungsten. Nucl. Instrum. Methods Phys. Res., B 244, 377 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    F. Gao, Huiqiu Deng, H.L. Heinisch, and R.J. Kurtz: A new Fe-He interatomic potential based on ab initio calculations in α-Fe. J. Nucl. Mater. 418, 115 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    R.E. Stoller, S.I. Golubov, P.J. Kamenski, T. Seletskaia, and Yu.N. Osetsky: Implementation of a new Fe–He three-body interatomic potential for molecular dynamics simulations. Philos. Mag. 90, 923 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    A. Caro, J. Hetherly, A. Stukowski, M. Caro, E. Martinez, S. Srivilliputhur, L. Zepeda-Ruiz, and M. Nastasi: Properties of helium bubbles in Fe and FeCr alloys. J. Nucl. Mater. 418, 261 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    L. Hu, K.D. Hammond, B.D. Wirth, and D. Maroudas: Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten. J. Appl. Phys. 115, 173512 (2014).

    Article  CAS  Google Scholar 

  27. 27.

    D.M. Stewart, Yu.N. Osetsky, and R.E. Stoller: Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron. J. Nucl. Mater. 417, 1110 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    D. Perez, T. Vogel, and B.P. Uberuaga: Diffusion and transformation kinetics of small helium clusters in bulk tungsten. arXiv:1406.6418v1[cond-mat.mtrl-sci] 25 Jun 2014.

  29. 29.

    N. Juslin and B.D. Wirth: Interatomic potentials for simulation of He bubble formation in W. J. Nucl. Mater. 432, 61 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    CAS  Article  Google Scholar 

  31. 31.

    G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    CAS  Article  Google Scholar 

  33. 33.

    H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  34. 34.

    S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    CAS  Article  Google Scholar 

  35. 35.

    G.J. Ackland and R. Thetford: An improved N-body semi-empirical model for body-centred cubic transition metals. Philos. Mag. A 56, 15 (1995).

    Article  Google Scholar 

  36. 36.

    D.E. Beck: A new interatomic function for helium. Mol. Phys. 14, 311 (1968).

    CAS  Article  Google Scholar 

  37. 37.

    K. Morishita, R. Sugano, and B.D. Wirth: Thermal stability of helium–vacancy clusters in iron. Nucl. Instrum. Methods Phys. Res., B 202, 76 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    C.C. Fu and F. Willaime: Ab initio study of helium in α-Fe: Dissolution, migration, and clustering with vacancies. Phys. Rev. B 72, 064117 (2005).

    Article  CAS  Google Scholar 

  39. 39.

    C.C. Fu and F. Willaime: Interaction between helium and self-defects in alpha-iron from first principles. J. Nucl. Mater. 367–370, 244 (2007).

    Article  CAS  Google Scholar 

  40. 40.

    G. Lucas and R. Schaublin: Stability of helium bubbles in alpha-iron: A molecular dynamics study. J. Nucl. Mater. 386–388, 360 (2009).

    Article  CAS  Google Scholar 

  41. 41.

    T. Jourdan and J-P. Crocombette: A variable-gap model for calculating free energies of helium bubbles in metals. J. Nucl. Mater. 418, 98 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    A. De Backer, P.E. Lhuillier, C.S. Becquart, and M.F. Barthe: Modelling of the implantation and the annealing stages of 800 keV 3He implanted tungsten: Formation of nanovoids in the near surface region. J. Nucl. Mater. 429, 78 (2012).

    Article  CAS  Google Scholar 

  43. 43.

    A.V. Fedorov: Evolution of point defect clusters during ion irradiation and thermal annealing. Ph.D. Thesis, University of Delft, Delft, Netherlands, 2000, p. 25.

    Google Scholar 

  44. 44.

    K. Morishita, R. Sugano, and B.D. Wirth: MD and KMC modeling of the growth and shrinkage mechanisms of helium–vacancy clusters in Fe. J. Nucl. Mater. 323, 243 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    E.V. Kornelsen and A.A. Van Gorkum: A study of bubble nucleation in tungsten using thermal desorption spectrometry: Clusters of 2 to 100 helium atoms. J. Nucl. Mater. 92, 79 (1980).

    CAS  Article  Google Scholar 

  46. 46.

    D. Nguyen-Manh and S.L. Dudarev: Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation. Nucl. Instrum. Methods Phys. Res., B, submitted (

  47. 47.

    C.S. Becquart and C. Domain: Ab initio calculations about intrinsic point defects and He in W. Nucl. Instrum. Methods B 255, 23 (2007).

    CAS  Article  Google Scholar 

  48. 48.

    G. Henkelman and H. Jonsson: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

    CAS  Article  Google Scholar 

  49. 49.

    G. Henkelman, B.P. Uberuaga, and H. Jonsson: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

    CAS  Article  Google Scholar 

  50. 50.

    A. Nakano: A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation. Comput. Phys. Commun. 178, 280 (2008).

    CAS  Article  Google Scholar 

  51. 51.

    E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  CAS  Google Scholar 

  52. 52.

    J. Boisse, C. Domain, and C.S. Becquart: Modelling self trapping and trap mutation in tungsten using DFT and molecular dynamics with an empirical potential based on DFT. J. Nucl. Mater. 455, 10 (2014).

    CAS  Article  Google Scholar 

Download references


This work is supported by CEA under the collaborative contract number V 3542.001 on Fusion engineering issues. This research has been done using the CRI supercomputer of the Université Lille1 – Sciences et Technologies supported by the Fonds Européens de Développement Régional. This work is also a part of the research program of the EDF-CNRS joint laboratory EM2VM (Study and Modelling of the Microstructure for Ageing of Materials). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 210130335 and from the RCUK Energy Programme [grant number EP/I501045]. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Dr. A. De Backer particularly thanks Dr. D. Nguyen-Manh for pointing out the experimental results of E.V. Kornelsen.

Author information



Corresponding author

Correspondence to C. S. Becquart.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boisse, J., De Backer, A., Domain, C. et al. Modeling of the self trapping of helium and the trap mutation in tungsten using DFT and empirical potentials based on DFT. Journal of Materials Research 29, 2374–2386 (2014).

Download citation