Investigation of the persistent luminescence of LiBaPO4:Eu2+

Abstract

We investigated the persistent luminescence in europium-doped LiBaPO4. The persistent phosphors were synthesized via solid-state reaction method under mild reducing atmosphere. Its properties were investigated by x-ray diffraction, diffuse reflectance, photoluminescence, persistent luminescence, and thermoluminescence spectra. Under UV irradiation, broad-band persistent luminescence peaked at ∼470 nm was observed in the phosphors at room temperature. The effects of Eu2+ concentration on the persistent luminescence of LiBaPO4:Eu2+ were discussed. An energy level scheme was constructed to convey reasonable trapping and detrapping processes in the material.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    K.V.d. Eeckhout, P.F. Smet, and D. Poelman: Persistent luminescence in Eu2+-doped compounds: A review. Materials 3, 2536 (2010).

    Article  CAS  Google Scholar 

  2. 2.

    H.F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and L.C.V. Rodrigues: Persistent luminescence mechanisms: Human imagination at work. Opt. Mater. Express 2, 371 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    H.F. Brito, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, and L.C.V. Rodrigues: Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: A thermoluminescence study. Opt. Mater. Express 2, 287 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    S.W.S. McKeever: Thermoluminescence of Solids (Cambridge University Press, Cambridge, UK, 1985), p. 90.

    Google Scholar 

  5. 5.

    H. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L.V. Rodrigues: Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. J. Therm. Anal. Calorim. 105, 657 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    W. Zeng, Y. Wang, S. Han, W. Chen, G. Li, Y. Wang, and Y. Wen: Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl:Eu2+,Dy3+. J. Mater. Chem. C 1, 3004 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    L.C.V. Rodrigues, H.F. Brito, J. Hölsä, and M. Lastusaari: Persistent luminescence behavior of materials doped with Eu2+ and Tb3+. Opt. Mater. Express 2, 382 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    W. Chen and J. Zhang: Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 6, 1159 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    B-Y. Wu, H-F. Wang, J-T. Chen, and X-P. Yan: Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686 (2010).

    Article  CAS  Google Scholar 

  10. 10.

    M. Thomas, S. Daniel, and R. Cyrille: Persistent luminescence nanoparticles for diagnostics and imaging. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices; M. Hepel and C.-J. Zhong, eds.; Vol. 2; American Chemical Society, Washington, DC, 2012; p. 1.

    Google Scholar 

  11. 11.

    Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman: Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104, 9266 (2007).

    Article  CAS  Google Scholar 

  12. 12.

    T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama: A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang: Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 20, 1505 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    Z. Pan, Y.Y. Lu, and F. Liu: Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58 (2011).

    Article  CAS  Google Scholar 

  15. 15.

    L.C.V. Rodrigues, H.F. Brito, J. Hölsä, R. Stefani, M.C.F.C. Felinto, M. Lastusaari, T. Laamanen, and L.A.O. Nunes: Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+. J. Phys. Chem. C 116, 11232 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    P. Boutinaud, C. Parent, G.L. Flem, B. Moine, and C. Pedrini: The solid solution BaLi1-xCuxPO4 (x ≤ 0.5): An example of Cu+ single-ion luminescence in oxide insulators. J. Mater. Chem. 6, 381 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    M-T. Paques-Ledent: Vibrational spectra and structure of LiB2+PO4 compounds with B = Sr, Ba, Pb. J. Solid State Chem. 23, 147 (1978).

    CAS  Article  Google Scholar 

  18. 18.

    J. Sun, X. Zhang, Z. Xia, and H. Du: Luminescent properties of LiBaPO4:RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes. J. Appl. Phys. 111, 013101 (2012).

    Article  CAS  Google Scholar 

  19. 19.

    Z. Wu, J. Liu, M. Gong, and Q. Su: Optimization and temperature-dependent luminescence of LiBaPO4:Eu2+ phosphor for near-UV light-emitting diodes. J. Electrochem. Soc. 156, H153 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    D. Wei, Y. Huang, S. Zhang, Y.M. Yu, and H.J. Seo: Luminescence spectroscopy of Ce3+-doped ABaPO4 (A=Li, Na, K) phosphors. Appl. Phys. B 108, 447 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    M.S. Waite: Luminescence of alkali-alkaline earth-phosphates activated with Eu2+. J. Electrochem. Soc. 121, 1122 (1974).

    CAS  Article  Google Scholar 

  22. 22.

    Z. Wu, J. Liu, Q. Guo, and M. Gong: A novel blue-green-emitting phosphor LiBaPO4:Eu2+ for white light-emitting diodes. Chem. Lett. 37, 190 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, and H.J. Seo: Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor. Chem. Mater. 23, 1216 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    G. Ju, Y. Hu, L. Chen, X. Wang, and L. Hung: Persistent luminescence properties of SrMg2(PO4)2:Eu2+,Tb3+. Appl. Phys. A (2013, in press). doi: https://doi.org/10.1007/s00339-013-7716-1.

  25. 25.

    G. Ju, Y. Hu, L. Chen, and X. Wang: Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+. J. Appl. Phys. 111, 113508 (2012).

    Article  CAS  Google Scholar 

  26. 26.

    G. Ju, Y. Hu, L. Chen, X. Wang, and Z. Mu: Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R=Y, La, Ce, Gd, Tb and Lu). Mater. Res. Bull. 48, 2598 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    M.A. Omar: Elementary Solid State Physics: Principles and Applications (Addison-Wesley Pub. Co., Boston, MA, 1975).

    Google Scholar 

  28. 28.

    J. Tauc, R. Grigorovici, and A. Vancu: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627 (1966).

    CAS  Article  Google Scholar 

  29. 29.

    F. Yakuphanoglu, S. Ilican, M. Caglar, and Y. Caglar: The determination of the optical band and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 9, 2180 (2007).

    CAS  Google Scholar 

  30. 30.

    E.A. Davis and N.F. Mott: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903 (1970).

    CAS  Article  Google Scholar 

  31. 31.

    P.M. Amirtharaj and D.G. Seiler: Optical properties of semiconductors. In Handbook of Optics: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry, Vol. II; M. Bass ed.; (McGraw-Hill, Inc., 1995), p. 36.24.

  32. 32.

    E.L. Simmons: Diffuse reflectance spectroscopy: A comparison of the theories. Appl. Opt. 14, 1380 (1975).

    CAS  Article  Google Scholar 

  33. 33.

    J. Torrent and V. Barrón: Diffuse reflectance spectroscopy. In Methods of Soil Analysis: Part 5, Mineralogical Methods; A.L. Ulery and L.R. Drees ed.; Soil Science Society of America, Madison, WI, 2008, p. xvii.

    Google Scholar 

  34. 34.

    J.H. Nobbs: Kubelka–Munk theory and the prediction of reflectance. Rev. Prog. Color. Relat. Top. 15, 66 (1985).

    Article  Google Scholar 

  35. 35.

    P. Dorenbos: Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 15, 8417 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    P. Dorenbos: Locating lanthanide impurity levels in the forbidden band of host crystals. J. Lumin. 108, 301 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    W.T. Carnall, P.R. Fields, and K. Rajnak: Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49, 4450 (1968).

    CAS  Article  Google Scholar 

  38. 38.

    P. Dorenbos: Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104, 239 (2003).

    CAS  Article  Google Scholar 

  39. 39.

    G. Blasse and B.C. Grabmaier: Luminescent Materials (Springer-Verlag, Berlin, Germany, 1994).

    Google Scholar 

  40. 40.

    G. Ju, Y. Hu, L. Chen, X. Wang, and Z. Mu: Concentration quenching of persistent luminescence. Phys. B 415, 1 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa: Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals. J. Lumin. 85, 149 (1999).

    CAS  Article  Google Scholar 

  42. 42.

    C.S. Shalgaonkar and A.V. Narlikar: Review: A review of the recent methods for determining trap depth from glow curves. J. Mater. Sci. 7, 1465 (1972).

    CAS  Article  Google Scholar 

  43. 43.

    P. Dorenbos: Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds. J. Phys. Condens. Matter 17, 8103 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    P.F. Smet, K.V.d. Eeckhout, A.J.J. Bos, E.V.d. Kolk, and P. Dorenbos: Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M=Ca, Sr, Ba) persistent phosphors. J. Lumin. 132, 682 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    J.E.V. Haecke, P.F. Smet, and D. Poelman: Luminescent characterization of CaAl2S4:Eu powder. J. Lumin. 126, 508 (2007).

    Article  CAS  Google Scholar 

  46. 46.

    T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski: Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+. J. Phys. Chem. B 110, 4589 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, and R. Valtonen: X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. Opt. Mater. 31, 1877 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    A.J.J. Bos, R.M.V. Duijvenvoorde, E.V.d. Kolk, W. Drozdowski, and P. Dorenbos: Thermoluminescence excitation spectroscopy: A versatile technique to study persistent luminescence phosphors. J. Lumin. 131, 1465 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang: Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation. Acta Mater. 59, 3174 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    K. Korthout, K.V.d. Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P.F. Smet: Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes. Phys. Rev. B 84, 085140 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China (Grant No. 21271049).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yihua Hu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ju, G., Hu, Y., Chen, L. et al. Investigation of the persistent luminescence of LiBaPO4:Eu2+. Journal of Materials Research 29, 519–526 (2014). https://doi.org/10.1557/jmr.2014.1

Download citation