Thermal stability of a nanostructured layer on the surface of 316L stainless steel


To obtain a nanocrystalline surface layer, 316L stainless steel was treated by fast multiple rotation rolling (FMRR). The microstructure, after FMRR treatment and annealing treatment, was characterized by transmission electron microscopy and x-ray diffraction. Equiaxed nanocrystalline with the average grain size about 12 nm is obtained on the surface layer of FMRR sample. The investigation of thermal stability of the nanocrystalline layer indicates that the grains are still nanocrystalline and the average grain size is about 60 nm for annealing at 500 °C. In addition, the amount of α-martensite increases markedly as the annealing temperature increases from 300 to 500 °C. However, it begins to reduce at 600 °C due to the reversion transformation from martensite to austenite. After annealing at 400 °C, the microhardness of the annealed FMRR sample reaches a maximum value of about 660 HV, and it is four times higher than that of the original sample.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    P. Lacombe, B. Baroux, and G. Beranger: les aciers inoxydables, les editions de physiques (les Ulis cedex A, France, 1990), p. 663.

    Google Scholar 

  2. 2.

    E.O. Hall: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. London, Sect. B 64, 747–753 (1951).

    Article  Google Scholar 

  3. 3.

    N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

  4. 4.

    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng., A 168, 141–148 (1993).

    Article  Google Scholar 

  6. 6.

    K.H. Song, H.S. Kim, and W.Y. Kim: Improvement of mechanical properties in severely plastically deformed Ni–Cr alloy. Mater. Des. 35, 685–690 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, and R. Valiev: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43, 7338–7343 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Mine, Z. Horita, and Y. Murakami: Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater. 57, 2993–2002 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    J. Čížek, I. Procházka, O. Melikhova, G. Brauer, W. Anwand, R. Kužel, M. Cieslar, and R.K. Lslamgaliev: Investigation of spatial distribution of defects in ultra-fine grained copper. Appl. Surf. Sci. 194, 140–144 (2002).

    Article  Google Scholar 

  10. 10.

    Y. Todaka, M. Umemoto, J. Yin, Z.G. Liu, and K. Tsuchiya: Role of strain gradient on grain refinement by severe plastic deformation. Mater. Sci. Eng., A 462, 264–268 (2007).

    Article  Google Scholar 

  11. 11.

    R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scr. Mater. 49, 669–674 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu: Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 51, 225–229 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma, and R.Z. Valiev: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908–1917 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mater. Sci. Eng., A 343, 43–50 (2003).

    Article  Google Scholar 

  15. 15.

    V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev: Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater. Sci. Eng., A 303, 82–89 (2001).

    Article  Google Scholar 

  16. 16.

    H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, and A. Vinogradov: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 59, 7060–7069 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    K. Oh-ishia, Z.J. Horita, D.J. Smith, and T.G. Langdon: Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing. J. Mater. Res. 16, 583–589 (2001).

    Article  Google Scholar 

  18. 18.

    X.N. Du, S.M. Yin, S.C. Liu, B.Q. Wang, and J.D. Guo: Effect of the electropulsing on mechanical properties and microstructure of an ECAPed AZ31 Mg alloy. J. Mater. Res. 23, 1570–1577 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    H.S. Kim: Evaluation of strain rate during equal-channel angular pressing. J. Mater. Res. 17, 172–179 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Li, L. Wang, D.D. Zhang, and L. Shen: The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel. Appl. Surf. Sci. 257, 979–984 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Y.J. Mai, X.H. Jie, L.L. Liu, N. Yu, and X.X. Zheng: Thermal stability of nanocrystalline layers fabricated by surface nanocrystallization. Appl. Surf. Sci. 256, 1972–1975 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    D. Li, H.N. Chen, and H. Xu: The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel. Appl. Surf. Sci. 255, 3811–3816 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Z.B. Wang, J. Lu, and K. Lu: Investigations on composition and morphology of electrochemical conversion layer/titanium dioxide deposit on stainless steel. Surf. Coat. Technol. 201, 2796–2801 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    P.F. Chui, K.N. Sun, C. Sun, X.Q. Yang, and T. Shan: Effect of surface nanocrystallization induced by fast multiple rotation rolling on hardness and corrosion behavior of 316L stainless steel. Appl. Surf. Sci. 257, 6787–6791 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    X.H. Chen, J. Lu, L. Lu, and K. Lu: Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater. 52, 1039–1044 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    W.P. Tong, Z. Han, L.M. Wang, J. Lu, and K. Lu: Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment. Surf. Coat. Technol. 202, 4957–4963 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    V. Tsakiris and D.V. Edmonds: Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng., A 273–275, 430–436 (1999).

    Article  Google Scholar 

  28. 28.

    P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Beranger, and C. Lemaitre: Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater. Sci. Eng., A 280, 294–302 (2000).

    Article  Google Scholar 

  29. 29.

    K. Rajanna, B. Pathiraj, and B.H. Kolster: X-ray fractography studies on austenitic stainless steels. Eng. Fract. Mech. 54, 155–166 (1996).

    Article  Google Scholar 

  30. 30.

    B. Fultz and J.M. Howe: Transmission Electron Microscopy and Diffractometry of Materials, 2nd ed. (Springer, Berlin, Germany, 2002).

    Google Scholar 

  31. 31.

    H.P. Klug and L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974), p. 661.

    Google Scholar 

  32. 32.

    T.S. Wang, J.K. Yu, and B.F. Dong: Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surf. Coat. Technol. 200, 4777–4781 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    T. Roland, D. Retraint, K. Lu, and J. Lu: Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater. Sci. Eng., A 445–446, 281–288 (2007).

    Article  Google Scholar 

  34. 34.

    A. Etienne, B. Radiguet, C. Genevois, J-M. Le Breton, R. Valiev, and P. Pareige: Thermal stability of ultrafine-grained austenitic stainless steels. Mater. Sci. Eng., A 527, 5805–5810 (2010).

    Article  Google Scholar 

  35. 35.

    Y. Zhang, X.T. Jing, B.Z. Lou, F.S. Shen, and F.Z. Cui: Mechanism and reversible behavior of the α′ → γ transformation in 1Cr18Ni9Ti stainless steel. J. Mater. Sci. 34, 3291–3296 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    A. Di Schino, I. Salvatori, and J.M. Kenny: Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J. Mater. Sci. 37, 4561–4565 (2002).

    Article  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of the People’s Republic of China (no. 30870610, 30800221), China Postdoctoral Science Foundation (no. 200804401138), and Research Fund for Doctoral Program of Shaanxi University of Technology (no. SLGQD13 (2)-14).

Author information



Corresponding author

Correspondence to Pengfei Chui.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chui, P., Sun, K. Thermal stability of a nanostructured layer on the surface of 316L stainless steel. Journal of Materials Research 29, 556–560 (2014).

Download citation