Influence of film thickness and surface orientation on melting behaviors of copper nanofilms

Abstract

The effects of film thickness and surface orientation on melting behaviors of copper nanofilms were investigated by molecular dynamics simulations. A stepwise heating scheme was adopted to make sure that the nanofilms reached thermal equilibrium before further temperature increase. Melting of the nanofilms was monitored by examining the equilibrium potential energy, radial distribution function, and mean square displacement of the simulated nanofilms. From the simulation, the melting was observed to occur at a specific temperature within 1 K error, unlike the progressive melting process reported in the literature. The melted temperature and the latent heat of fusion of the nanofilms were found to increase with film thickness and approach the bulk value. The nanofilms with (111) surface have the highest melted temperature and the largest latent heat of fusion as compared to the ones with (001) and (011) surfaces, which could be explained by the lowest surface energy of (111) surface.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    E.V. Vasil’ev: Copper thin-film temperature-sensitive elements, resistive thermal transducers, and thermometers based on them. Meas. Tech. 38, 912 (1995).

    Article  Google Scholar 

  2. 2.

    S.P. Murarka, I.V. Verner, and R.J. Gutmann: Copper-fundamental Mechanisms for Microelectronic Applications (John Wiley & Sons, New York, 2000).

    Google Scholar 

  3. 3.

    C.F. Tsang and H.K. Hui: Evaluation of copper thin film on SiO2/Si substrates by dynamic ultramicroindentation, SEM and AFM. Surf. Interface Anal. 29, 735 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    R. Dingreville, A.J. Kulkarni, M. Zhou, and J. Qu: A semi-analytical method for quantifying the size-dependent elasticity of nanostructures. Modell. Simul. Mater. Sci. Eng. 16, 025002 (2008).

    Article  Google Scholar 

  5. 5.

    Y. Gan and J.K. Chen: Molecular dynamics study of size, temperature and rate dependent thermomechanical properties of copper nanofilms. Mech. Res. Commun. 36, 838 (2009).

    Article  Google Scholar 

  6. 6.

    I.L. Chang and W.C. Ding: The atomistic study of textured polycrystalline nanofilms. Comput. Model. Eng. Sci. 68, 297 (2010).

    Google Scholar 

  7. 7.

    X.B. Jing, Z.L. Liu, and K.L. Yao: Molecular dynamics investigation of deposition and annealing behaviors of Cu atoms onto Cu(001) substrate. Appl. Surf. Sci. 258, 2771 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    P. Buffat and J.P. Borel: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).

    CAS  Article  Google Scholar 

  9. 9.

    A. Safaei, M.A. Shandiz, S. Sanjabi, and Z.H. Barber: Modelling the size effect on the melting temperature of nanoparticles, nanowires and nanofims. J. Phys. Condens. Matter 19, 216216 (2007).

    Article  Google Scholar 

  10. 10.

    W.X. Zhang and C. He: Melting of Cu nanowires: A study using molecular dynamics simulation. J. Phys. Chem. C 114, 8717 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    X.Y. Yang and D. Wu: The melting behaviors of the Nb(110) nanofilm: A molecular dynamics study. Appl. Surf. Sci. 256, 3197 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    D.W. Shi, L.M. He, L.G. Kong, H. Lin, and L. Hong: Superheating of Ag nanowires studied by molecular dynamics simulations. Modell. Simul. Mater. Sci. Eng. 16, 025009 (2008).

    Article  Google Scholar 

  13. 13.

    N. Wang, S.I. Rokhlin, and D.F. Farson: Nonhomogeneous surface premelting of Au nanoparticles. Nanotechnology 19, 415701 (2008).

    Article  Google Scholar 

  14. 14.

    A. Adnan and C.T. Sun: Effect of surface morphology and temperature on the structural stability of nanoscale wavy films. Nanotechnology 19, 315702 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    H. Häkkinen and M. Manninen: Computer simulation of disordering and premelting of low-index faces of copper. Phys. Rev. B 46, 1725 (1992).

    Article  Google Scholar 

  16. 16.

    W.D. Callister and D.G. Rethwisch: Fundamentals of Materials Science and Engineering: An Integrated Approach (John Wiley & Sons, New Jersey, 2008).

    Google Scholar 

  17. 17.

    G. Manai and F. Delogu: Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems. Physica B 392, 288 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    J.A. Sanchez and M.P. Mengüç: Melting and vaporization of Cu and Ni films during electron-beam heating. J. Appl. Phys. 103, 054316 (2008).

    Article  Google Scholar 

  19. 19.

    M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    CAS  Article  Google Scholar 

  20. 20.

    S.M. Foiles, M.I. Baskes, and M.S. Daw: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).

    CAS  Article  Google Scholar 

  21. 21.

    M.S. Daw, S.M. Foiles, and M.I. Baskes: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9, 251 (1993).

    CAS  Article  Google Scholar 

  22. 22.

    C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  23. 23.

    J.M. Haile: Molecular Dynamics Simulation (Wiley-Interscience, New York, 1992).

    Google Scholar 

  24. 24.

    D.C. Rapaport: The Art of Molecular Dynamics Simulations (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  25. 25.

    R. Sankarasubramanian and K. Kumar: Effect of surface anisotropy on the melting temperatures of free-standing gold nanofilms. Comput. Mater. Sci. 49, 386 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    F. Celestini and J.M. Debierre: Measuring kinetic coefficients by molecular dynamics simulation of zone melting. Phys. Rev. E 65, 041605 (2002).

    Article  Google Scholar 

  27. 27.

    A.J. Kulkarni and M. Zhou: Surface-effects-dominated mechanical and thermal responses of zinc oxide nanobelts. Acta Mech. Sin. 22, 217 (2006).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support provided to this research by the National Science Council of the Republic of China under Project Grant Nos. NSC 100-2221-E-006-060 and NSC 99-2923-E-006-006-MY3. The authors are also grateful to the Taiwan National Center of High-Performance Computing for providing computer time and facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I-Ling Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liao, ML., Chang, IL. & Chang, FR. Influence of film thickness and surface orientation on melting behaviors of copper nanofilms. Journal of Materials Research 29, 535–541 (2014). https://doi.org/10.1557/jmr.2014.13

Download citation