Microstructure evolution of gas-atomized Fe–6.5 wt% Si droplets


The magnetic Fe–6.5 wt% Si powder was produced by gas atomization and its microstructure was also investigated. The secondary dendritic arm spacing (SDAS) is related to the droplet size, λ = 0.29 · D0.5, and the numerical solidification model was applied to the system, giving rise to the correlation of microstructure to the solidification process of the droplet. It is found that the solid fraction at the end of recalescence is strongly dependent on the undercooling achieved before nucleation; the chances for the smaller droplets to form the grain-refined microstructures are less than the larger ones. Furthermore, the SDAS is strongly influenced by the cooling rate of post-recalescence solidification, and the relationship can be expressed as follows, \(\lambda = 74.2 \cdot {\left({\dot T} \right)^{- 0.347}}\). Then, the growth of the SDAS is driven by the solute diffusion of the interdendritic liquids, leading to a coarsening phenomenon, shown in a cubic root law of local solidification time, \(\lambda = 10.73 \cdot {\left({{t_f}} \right)^{0.296}}\).

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    K.I. Arai and K. Ishiyama: Recent developments of new soft magnetic materials. J. Magn. Magn. Mater. 133(1–3), 233 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Takada, M. Abe, S. Masuda, and J. Inagaki: Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties. J. Appl. Phys. 64(10), 5367 (1988).

    CAS  Article  Google Scholar 

  3. 3.

    T. Yamaji, M. Abe, Y. Takada, K. Okada, and T. Hiratani: Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line. J. Magn. Magn. Mater. 133(1–3), 187 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    K.I.A.N. Tsuya: Ribbon-form silicon-iron alloy containing around 6.5 percent silicon. IEEE Trans. Mag. 16(1), 4 (1980).

    Google Scholar 

  5. 5.

    A.H. Kasama, A.J.J. Moreira, F°.W.J. Botta, C.S. Kiminami, and C. Bolfarini: Influence of the atomization gas on the microstructure and magnetic properties of spray-formed Fe–3%Si–3.5%Al alloys. Mater. Sci. Eng., A 477(1–2), 9 (2008).

    Article  Google Scholar 

  6. 6.

    H. Shokrollahi and K. Janghorban: Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189(1–3), 1 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    G.A.V. Sowter: Soft magnetic materials for audio transformers: History, production, and applications. J. Audio Eng. Soc. 35, 760 (1987).

    Google Scholar 

  8. 8.

    E. Bayraml, Ö. Gölgelioğlu, and H.B. Ertan: Powder metal development for electrical motor applications. J. Mater. Process. Technol. 161(1–2), 83 (2005).

    Article  Google Scholar 

  9. 9.

    N. Tiedje, P.N. Hansen, and A.S. Pedersen: Modeling of primary and secondary dendrites in a Cu-6 wt pct Sn alloyMetall. Mater. Trans. A 27(12), 4085 (1996).

    Article  Google Scholar 

  10. 10.

    A. Freyberg, M. Buchholz, V. Uhlenwinkel, and H. Henein: Droplet solidification and gas-droplet thermal coupling in the atomization of a Cu-6Sn alloy. Metall. Mater. Trans. B 34(2), 243 (2003).

    Article  Google Scholar 

  11. 11.

    C.G. Levi and R. Mehrabian: Microstructures of rapidly solidified aluminum alloy submicron powders. Metall. Mater. Trans. A 13(1), 13 (1982).

    Article  Google Scholar 

  12. 12.

    W.J. Boettinger, L. Bendersky, and J.G. Early: An analysis of the microstructure of rapidly solidified Al-8 wt pct Fe powder. Metall. Trans. A 17(5), 781 (1986).

    Article  Google Scholar 

  13. 13.

    R. Xu, Y.Y. Cui, D. Li, D.M. Xu, Q.C. Li, and Z.Q. Hu: Solidification microstructure of super-α2 alloy prepared by gas atomization. J. Mater. Sci. 32(14), 3821 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    B. Zheng, Y. Lin, Y. Zhou, and E. Lavernia: Gas atomization of amorphous aluminum powder: Part II. Experimental investigation. Metall. Mater. Trans. B 40(6), 995 (2009).

    Article  Google Scholar 

  15. 15.

    S. Li, P. Wu, H. Fukuda, and T. Ando: Simulation of the solidification of gas-atomized Sn-5mass%Pb droplets. Mater. Sci. Eng., A 499(1–2), 396 (2009).

    Article  Google Scholar 

  16. 16.

    C.G. Levi and R. Mehrabian: Heat-flow during rapid solidification of undercooled metal droplets. Metall. Trans. A 13(2), 221 (1982).

    Article  Google Scholar 

  17. 17.

    E.J. Lavernia, E.M. Gutierrez, J. Szekely, and N.J. Grant: A mathematical model of the liquid dynamic compaction process. Part 1: Heat flow in gas atomization. Int. J. Rapid Solidification 4, 89 (1988).

    CAS  Google Scholar 

  18. 18.

    E. Gutierrez-Miravete, E.J. Lavernia, G.M. Trapaga, J. Szekely, and N.J. Grant: A mathematical model of the spray deposition process. Metall. Trans. A 20(1), 71 (1989).

    Article  Google Scholar 

  19. 19.

    P. Mathur, D. Apelian, and A. Lawley: Analysis of the spray deposition process. Acta Metall. 37(2), 429 (1989).

    CAS  Article  Google Scholar 

  20. 20.

    E-S. Lee and S. Ahn: Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming. Acta Metall. Mater. 42(9), 3231 (1994).

    CAS  Article  Google Scholar 

  21. 21.

    D. Bergmann, U. Fritsching, and K. Bauckhage: A mathematical model for cooling and rapid solidification of molten metal droplets. Int. J. Therm. Sci. 39(1), 53 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    N.H. Pryds and J.H. Hattel: Spray forming: A numerical investigation of the influence of the gas to melt ratio on the billet surface temperature. Int. J. Therm. Sci. 44(6), 587 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    R. Heringer, C.A. Gandin, G. Lesoult, and H. Henein: Atomized droplet solidification as an equiaxed growth model. Acta Mater. 54(17), 4427 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    N. Zeoli, S. Gu, and S. Kamnis: Numerical modelling of metal droplet cooling and solidification. Int. J. Heat Mass Transfer 51(15–16), 4121 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    B. Zheng, Y. Lin, Y. Zhou, and E. Lavernia: Gas atomization of amorphous aluminum: Part I. Thermal behavior calculations. Metall. Mater. Trans. B 40(5), 768 (2009).

    Article  Google Scholar 

  26. 26.

    H. Okamoto: Phase Diagrams for Binary Alloys, 2nd ed. (ASM International, 2000).

  27. 27.

    R. Trivedi and K. Somboonsuk: Constrained dendritic growth and spacing. Mater. Sci. Eng. 65(1), 65 (1984).

    CAS  Article  Google Scholar 

  28. 28.

    J.P. Hirth: Nucleation, undercooling and homogeneous structures in rapidly solidified powders. Metall. Trans. A 9(3), 401 (1978).

    Article  Google Scholar 

  29. 29.

    W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed. (Trans. Tech. Publications, 1998).

  30. 30.

    K-C. Chang and C-M. Chen: Revisiting heat transfer analysis for rapid solidification of metal droplets. Int. J. Heat Mass Transfer 44(8), 1573 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    D. Turnbull and R.E. Cech: Microscopic observation of the solidification of small metal droplets. J. Appl. Phys. 21(8), 804 (1950).

    Article  Google Scholar 

  32. 32.

    D.M. Herlach, K. Eckler, A. Karma, and M. Schwarz: Grain refinement through fragmentation of dendrites in undercooled melts. Mater. Sci. Eng., A 304–306(0), 20 (2001).

    Article  Google Scholar 

  33. 33.

    N.H. Pryds and A.S. Pedersen: Rapid solidification of martensitic stainless steel atomized droplets. Metall. Mater. Trans. A 33(12), 3755 (2002).

    Article  Google Scholar 

  34. 34.

    T.Z. Kattamis and M.C. Flemings: Dendrite morphology, microsegregation, and homogenization of low-alloy steel. Trans. Metall. Soc. AIME 223, 8 (1965).

    Google Scholar 

  35. 35.

    S.P. Marsh and M.E. Glicksman: Overview of geometric effects on coarsening of mushy zones. Metall. Mater. Trans. A 27(3), 557 (1996).

    Article  Google Scholar 

Download references


Appreciation is expressed to Dr. W. Löser for many valuable discussions and for his constructive comments on the manuscript. The authors would like to acknowledge the financial support received from China National Natural Science Foundation (No. 51074104), China National Basic Research Development Project (973 Program: No. 2010CB630802), and Innovation and Creativity Fund of Shanghai University. Instrumental Analysis & Research Center of Shanghai University provided facility for the study of the microstructures.

Author information



Corresponding author

Correspondence to Changjiang Song.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, K., Song, C., Zhai, Q. et al. Microstructure evolution of gas-atomized Fe–6.5 wt% Si droplets. Journal of Materials Research 29, 527–534 (2014). https://doi.org/10.1557/jmr.2014.12

Download citation