Understanding the brittleness of metallic glasses through dynamic clusters

Abstract

Exploiting molecular dynamics simulation, this article investigates the dynamic process of atomic rearrangement in two metallic glasses (MGs), Cu50Zr50 and Fe80P20, which are well known as ductile and brittle MGs under compression, respectively. It was found that the local rearrangements can be identified clearly by the distribution of kinetic energy and atomic strain rate, and that they are always driven by several high-velocity atoms in the core and induce a large shear and tensile strain over a very short duration. The size, kinetic energy, strain rate, and cavitation rate of the clusters in Fe80P20 are markedly larger than those in Cu50Zr50, which explains the distinct strength and brittleness of these two MGs. This study further confirmed that localized rearrangement of atomic structure is the underlying mechanism of plastic deformation in MGs, which governs their macro-scale mechanical performance.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    C.S.A. Inoue: Bulk Metallic Glasses (CRC Press, Boca Raton, FL, 2011).

    Google Scholar 

  2. 2.

    A.L. Greer, K.L. Rutherford, and M. Hutchings: Wear resistance of amorphous alloys and related materials. Int. Mater. Rev. 47(2), 87 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    W.L. Johnson: Bulk amorphous metal: An emerging engineering material. JOM 54(3), 40 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    W.H. Wang, X.Q. Zang, and R.S. Lu: Low formaldehyde emission particleboard bonded by UF-MDI mixture adhesive. For. Prod. J. 54(9), 36 (2004).

    CAS  Google Scholar 

  5. 5.

    M.W. Chen: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    J. Lu, G. Ravichandran, and W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51(12), 3429 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    W.D. Liu, K.X. Liu, X.X. Xia, and W.H. Wang: The failure stress of bulk metallic glasses under very high strain rate. J. Mater. Res. 25(7), 1230 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Overview No. 144–Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, and W.H. Wang: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98(23), 235501 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93(25), 255506 (2004).

    Article  Google Scholar 

  12. 12.

    D. Rodney, A. Tanguy, and D. Vandembroucq: Modeling the mechanics of amorphous solids at different length scale and time scale. Modell. Simul. Mater. Sci. Eng. 19(8), 083001 (2011).

    Article  Google Scholar 

  13. 13.

    W.D. Liu, H.H. Ruan, and L.C. Zhang: On the plasticity event in metallic glass. Philos. Mag. Lett. 535–536, 158 (2013).

    Article  Google Scholar 

  14. 14.

    H.H. Ruan, L.C. Zhang, and J. Lu: A new constitutive model for shear banding instability in metallic glass. Int. J. Solids Struct. 48(21), 3112 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    W.D. Liu, H.H. Ruan, and L.C. Zhang: Atomic rearrangements in metallic glass: Their nucleation and self-organization. Acta Mater. 61(16), 6050 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    A.S. Argon: Plastic-deformation in metallic glasses. Acta Metall. Mater. 27(1), 47 (1979).

    CAS  Article  Google Scholar 

  17. 17.

    S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, and W.H. Wang: The activation energy and volume of flow units of metallic glasses. Scr. Mater. 67(1), 9 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    D. Pan, A. Inoue, T. Sakurai, and M.W. Chen: Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. U.S.A. 105(39), 14769 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    R. Dasgupta, S. Karmakar, and I. Procaccia: Universality of the plastic instability in strained amorphous solids. Phys. Rev. Lett. 108(7), 075701 (2012).

    Article  Google Scholar 

  20. 20.

    S. Takeuchi and K. Edagawa: Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog. Mater. Sci. 56(6), 785 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Y.Q. Cheng and E. Ma: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56(4), 379 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    A.J. Cao, Y.Q. Cheng, and E. Ma: Structural processes that initiate shear localization in metallic glass. Acta Mater. 57(17), 5146 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Y.F. Shi and M.L. Falk: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95(9), 095502 (2005).

    Article  Google Scholar 

  24. 24.

    P. Murali, Y.W. Zhang, and H.J. Gao: On the characteristic length scales associated with plastic deformation in metallic glasses. Appl. Phys. Lett. 100(20), 201901 (2012).

    Article  Google Scholar 

  25. 25.

    P. Murali, R. Narasimhan, T.F. Guo, Y.W. Zhang, and H.J. Gao: Shear bands mediate cavitation in brittle metallic glasses. Scr. Mater. 68(8), 567 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    P. Murali, T.F. Guo, Y.W. Zhang, R. Narasimhan, Y. Li, and H.J. Gao: Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys. Rev. Lett. 107(21), 215501 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev: Development of an interatomic potential for phosphorus impurities in alpha-iron. J. Phys. Condens. Matter 16(27), S2629 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel: Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys. Philos. Mag. 89(11), 967 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    T. Schlick: Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer, New York, NY, 2002).

    Google Scholar 

  30. 30.

    D.C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge University Press, New York, NY, 2004).

    Google Scholar 

  31. 31.

    S. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1 (1995).

    CAS  Article  Google Scholar 

  32. 32.

    A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).

    Article  Google Scholar 

  33. 33.

    Y.Q. Cheng and E. Ma: Intrinsic shear strength of metallic glass. Acta Mater. 59(4), 1800 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)(2/3) temperature dependence. Phys. Rev. Lett. 95(19), 195501 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    P. Bak, C. Tang, and K. Wiesenfeld: Self-organized criticality: An explanation of 1/F noise. Phys. Rev. Lett. 59(4), 381 (1987).

    CAS  Article  Google Scholar 

  36. 36.

    B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105(3), 035501 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    F. Shimizu, S. Ogata, and J. Li: Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48(11), 2923 (2007).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors appreciate the Australian Research Council for its financial support to this work. This work was also supported by an award under the Merit Allocation Scheme on the NCI National Facility at ANU and computational resources provided by Intersect Australia Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liang-Chi Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, WD., Ruan, HH. & Zhang, LC. Understanding the brittleness of metallic glasses through dynamic clusters. Journal of Materials Research 29, 561–568 (2014). https://doi.org/10.1557/jmr.2014.11

Download citation