Abstract
Exploiting molecular dynamics simulation, this article investigates the dynamic process of atomic rearrangement in two metallic glasses (MGs), Cu50Zr50 and Fe80P20, which are well known as ductile and brittle MGs under compression, respectively. It was found that the local rearrangements can be identified clearly by the distribution of kinetic energy and atomic strain rate, and that they are always driven by several high-velocity atoms in the core and induce a large shear and tensile strain over a very short duration. The size, kinetic energy, strain rate, and cavitation rate of the clusters in Fe80P20 are markedly larger than those in Cu50Zr50, which explains the distinct strength and brittleness of these two MGs. This study further confirmed that localized rearrangement of atomic structure is the underlying mechanism of plastic deformation in MGs, which governs their macro-scale mechanical performance.
This is a preview of subscription content, access via your institution.









References
- 1.
C.S.A. Inoue: Bulk Metallic Glasses (CRC Press, Boca Raton, FL, 2011).
- 2.
A.L. Greer, K.L. Rutherford, and M. Hutchings: Wear resistance of amorphous alloys and related materials. Int. Mater. Rev. 47(2), 87 (2002).
- 3.
W.L. Johnson: Bulk amorphous metal: An emerging engineering material. JOM 54(3), 40 (2002).
- 4.
W.H. Wang, X.Q. Zang, and R.S. Lu: Low formaldehyde emission particleboard bonded by UF-MDI mixture adhesive. For. Prod. J. 54(9), 36 (2004).
- 5.
M.W. Chen: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008).
- 6.
A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279 (2000).
- 7.
J. Lu, G. Ravichandran, and W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51(12), 3429 (2003).
- 8.
W.D. Liu, K.X. Liu, X.X. Xia, and W.H. Wang: The failure stress of bulk metallic glasses under very high strain rate. J. Mater. Res. 25(7), 1230 (2010).
- 9.
C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Overview No. 144–Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067 (2007).
- 10.
G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, and W.H. Wang: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98(23), 235501 (2007).
- 11.
J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93(25), 255506 (2004).
- 12.
D. Rodney, A. Tanguy, and D. Vandembroucq: Modeling the mechanics of amorphous solids at different length scale and time scale. Modell. Simul. Mater. Sci. Eng. 19(8), 083001 (2011).
- 13.
W.D. Liu, H.H. Ruan, and L.C. Zhang: On the plasticity event in metallic glass. Philos. Mag. Lett. 535–536, 158 (2013).
- 14.
H.H. Ruan, L.C. Zhang, and J. Lu: A new constitutive model for shear banding instability in metallic glass. Int. J. Solids Struct. 48(21), 3112 (2011).
- 15.
W.D. Liu, H.H. Ruan, and L.C. Zhang: Atomic rearrangements in metallic glass: Their nucleation and self-organization. Acta Mater. 61(16), 6050 (2013).
- 16.
A.S. Argon: Plastic-deformation in metallic glasses. Acta Metall. Mater. 27(1), 47 (1979).
- 17.
S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, and W.H. Wang: The activation energy and volume of flow units of metallic glasses. Scr. Mater. 67(1), 9 (2012).
- 18.
D. Pan, A. Inoue, T. Sakurai, and M.W. Chen: Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. U.S.A. 105(39), 14769 (2008).
- 19.
R. Dasgupta, S. Karmakar, and I. Procaccia: Universality of the plastic instability in strained amorphous solids. Phys. Rev. Lett. 108(7), 075701 (2012).
- 20.
S. Takeuchi and K. Edagawa: Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog. Mater. Sci. 56(6), 785 (2011).
- 21.
Y.Q. Cheng and E. Ma: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56(4), 379 (2011).
- 22.
A.J. Cao, Y.Q. Cheng, and E. Ma: Structural processes that initiate shear localization in metallic glass. Acta Mater. 57(17), 5146 (2009).
- 23.
Y.F. Shi and M.L. Falk: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95(9), 095502 (2005).
- 24.
P. Murali, Y.W. Zhang, and H.J. Gao: On the characteristic length scales associated with plastic deformation in metallic glasses. Appl. Phys. Lett. 100(20), 201901 (2012).
- 25.
P. Murali, R. Narasimhan, T.F. Guo, Y.W. Zhang, and H.J. Gao: Shear bands mediate cavitation in brittle metallic glasses. Scr. Mater. 68(8), 567 (2013).
- 26.
P. Murali, T.F. Guo, Y.W. Zhang, R. Narasimhan, Y. Li, and H.J. Gao: Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys. Rev. Lett. 107(21), 215501 (2011).
- 27.
G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev: Development of an interatomic potential for phosphorus impurities in alpha-iron. J. Phys. Condens. Matter 16(27), S2629 (2004).
- 28.
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel: Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys. Philos. Mag. 89(11), 967 (2009).
- 29.
T. Schlick: Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer, New York, NY, 2002).
- 30.
D.C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge University Press, New York, NY, 2004).
- 31.
S. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1 (1995).
- 32.
A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).
- 33.
Y.Q. Cheng and E. Ma: Intrinsic shear strength of metallic glass. Acta Mater. 59(4), 1800 (2011).
- 34.
W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)(2/3) temperature dependence. Phys. Rev. Lett. 95(19), 195501 (2005).
- 35.
P. Bak, C. Tang, and K. Wiesenfeld: Self-organized criticality: An explanation of 1/F noise. Phys. Rev. Lett. 59(4), 381 (1987).
- 36.
B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105(3), 035501 (2010).
- 37.
F. Shimizu, S. Ogata, and J. Li: Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48(11), 2923 (2007).
ACKNOWLEDGMENTS
The authors appreciate the Australian Research Council for its financial support to this work. This work was also supported by an award under the Merit Allocation Scheme on the NCI National Facility at ANU and computational resources provided by Intersect Australia Ltd.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, WD., Ruan, HH. & Zhang, LC. Understanding the brittleness of metallic glasses through dynamic clusters. Journal of Materials Research 29, 561–568 (2014). https://doi.org/10.1557/jmr.2014.11
Received:
Accepted:
Published:
Issue Date: