Toward tailored functionality of titania nanotube arrays: Interpretation of the magnetic-structural correlations


Ordered arrays of titania nanotubes (NTs) are considered as good candidates for photocatalytic applications including water splitting. Considering that the functionality of these nanostructures is influenced by their morphology, electronic and the crystallographic structure, fundamental understanding of these properties and their possible correlations can clarify the approaches toward enhanced photocatalytic efficiency. In this work, ordered arrays of titania NTs are synthesized electrochemically and are subjected to isochronal annealing treatments in various atmospheres (oxygen-rich, oxygen-deficient and reducing) to modify their morphology, crystal and electronic structure. Upon characterization of these NTs, direct correlations are found between the annealing atmosphere and the corresponding unit cell volume and the crystallite size. Furthermore, correlations between the NTs’ structure and magnetic response are observed, revealing changes in the electronic structure such as the density of states, that are in turn relevant to the functional catalytic properties of titania.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.


  1. 1.

    V. Subramanian, E. Wolf, and P.V. Kamat: Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105(46), 11439 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    O.K. Varghese, M. Paulose, and C.A. Grimes: Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnol. 4(9), 592 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    J.M. Macak, M. Zlamal, J. Krysa, and P. Schmuki: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Z. Su and W. Zhou: Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 21, 8955 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, and S. Zhang: Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal. Lett. 129(4), 513 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    D.J. Siegel, M. Schilfgaarde, and J.C. Hamilton: Understanding the magnetocatalytic effect: magnetism as a driving force for surface segregation. Phys. Rev. Lett. 92(8), 086101 (2004).

    Article  CAS  Google Scholar 

  7. 7.

    F. Moreau and G.C. Bond: CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catal. Today 114(4), 362 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    H. Zhang and J.F. Banfield: Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chem. Mater. 14(10), 4145 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J.W. Chin: Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153(7), D123 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    A.F. Halverson, K. Zhu, P.T. Erslev, J.Y. Kim, N.R. Neale, and A.J. Frank: Perturbation of the electron transport mechanism by proton intercalation in nanoporous TiO2 films. Nano Lett. 12(4), 2112 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    O.K. Varghese, M. Paulose, K. Shankar, G. Mor, and C.A. Grimes: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5(7), 1158 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    G.A. Novak and A.A. Colville: A practical interactive least-squares cell-parameter program using an electronic spreadsheet and a personal computer. Am. Mineral. 74(4), 488 (1989).

    Google Scholar 

  13. 13.

    L.H. Lewis and K.M. Bussmann: A sample holder design and calibration technique for the quantum design magnetic properties measurement system superconducting quantum interference device magnetometer. Rev. Sci. Instrum. 67(10), 3537 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    W. Kang and M.S. Hybertsen: Quasiparticle and optical properties of rutile and anatase TiO2. Phys. Rev. B 82(8), 085203 (2010).

    Article  CAS  Google Scholar 

  15. 15.

    P. Rhodes and E.P. Wohlfarth: The effective Curie-Weiss constant of ferromagnetic metals and alloys. Proc. R. Soc. London, Ser. A 273(1353), 247 (1963).

    CAS  Article  Google Scholar 

  16. 16.

    P.M. Hosseinpour, E. Panaitescu, J. Lim, J. Morris, L.H. Lewis, and L. Menon: Morphology and structure of heat-treated titania nanotubes. Nanomater. Energy 2(1), 35 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    F.E. Senftle, T. Pankey, and F.A. Grant: Magnetic susceptibility of tetragonal titanium dioxide. Phys. Rev. 120(3), 820 (1960).

    CAS  Article  Google Scholar 

  18. 18.

    J.B. Goodenough: Magnetism and The Chemical Bond (Interscience Publishers, New York, 1963), pp. 13–17.

    Google Scholar 

  19. 19.

    C. Kittel: Introduction to Solid State Physics, 3rd ed. (John Wiley & Sons, Inc., New York, 1968), pp. 432–435.

    Google Scholar 

  20. 20.

    N.W. Ashcroft and N.D. Mermin: Solid State Physics (Brooks/Cole, Cengage Learning, California, 1976), pp. 661–664.

    Google Scholar 

  21. 21.

    L.H. Lewis, E. Baumberger, and R.J. Gambino: Magnetic ordering in Pd/Mn oxide nanocomposites. J. Appl. Phys. 99(8), 08P901 (2006).

    Article  CAS  Google Scholar 

  22. 22.

    J-Y. Park, C. Lee, K-W. Jung, and D. Jung: Structure related photocatalytic properties of TiO2. Bull. Korean Chem. Soc. 30(2), 402 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    D.A. Stewart and F. Léonard: Photocurrents in nanotube junctions. Phys. Rev. Lett. 93(10), 107401 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    K. Yang, Y. Dai, B. Huang, and Y.P. Feng: Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2. Phys. Rev. B 81(3), 033202 (2010).

    Article  CAS  Google Scholar 

  25. 25.

    S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, and V.G. Harris: Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2-δ films. J. Phys. Condens. Matter 18(27), L355 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    D.R. Lide: Crc Handbook of Physics and Chemistry, 90th ed. (CRC Press, Florida, 2010), pp. 4–147.

    Google Scholar 

  27. 27.

    H. Neff, S. Henkel, E. Hartmannsgruber, E. Steinbeiss, W. Michalke, K. Steenbeck, and H.G. Schmidt: Structural, optical, and electronic properties of magnetron-sputtered platinum oxide films. J. Appl. Phys. 79(10), 7672 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    C. Richter, C. Jaye, E. Panaitescu, D.A. Fischer, L.H. Lewis, R.J. Willey, and L. Menon: Effect of potassium adsorption on the photochemical properties of titania nanotube arrays. J. Mater. Chem. 19, 2963 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    F.A. Kröger and H.J. Vink: Solid State Physics, Vol. 3 (Academic Press, New York, 1956), pp. 273–301.

    Google Scholar 

  30. 30.

    F. Guillemot, M.C. Porté, C. Labrugère, and C. Baquey: Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: Interest of titanium biomedical applications. J. Colloid Interface Sci. 255(1), 75 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    L.K. Keys and L.N. Mulay: Magnetic susceptibility measurements of rutile and the magnéli phases of the Ti-O system. Phys. Rev. 154(2), 453 (1967).

    CAS  Article  Google Scholar 

  32. 32.

    A. Ghicov, H. Tsuchiya, J.M. Macak, and P. Schmuki: Annealing effects on the photoresponse of TiO2 nanotubes. Phys. Status Solidi A 203(4), R28 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    P. Xiao, D. Liu, B.B. Garcia, and S. Sepehri: Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sens. Actuators, B 134(2), 367 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    L.B. Xiong, J-L. Li, B. Yang, and Y. Yu: Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J. Nanomater. 2012, 831524 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    S.D. Yoon, V.G. Harris, C. Vittoria, and A. Widom: Electronic transport in oxygen deficient ferromagnetic semiconducting TiO2-δ. J. Phys. Condens. Matter 19(32), 326202 (2007).

    Article  CAS  Google Scholar 

  36. 36.

    D.R. Lide, Crc Handbook of Physics and Chemistry, 90 th ed. (CRC Press, Florida, 2010), pp. 12–12.

    Google Scholar 

  37. 37.

    Y-C. Nah, I. Paramasivam, and P. Schmuki: Doped TiO2 and TiO2 nanotubes: Synthesis and applications. Chem. Phys. Chem. 11(13), 2698 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    F. Zhang, S-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, and I.P. Herman: Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    M-B. Choi, S-Y. Jeon, H-S. Yang, J-Y. Park, and S-J. Song: Determination of oxygen chemical diffusivity from chemical expansion relaxation for BaCo0.7Fe0.22Nb0.08O3-δ. J. Electrochem. Soc. 158(2), B189 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, and K.J. Reed: A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J. Phys. Chem. C 113(34), 15155 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    M. Inagaki, R. Nonaka, B. Tryba, and A.W. Morawski: Dependenece of photocatalytic activity of anatase powders on their crystallinity. Chemosphere 64(3), 437 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu, and X.H. Bao: The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50(1), 39 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    L. Fan, J. Dongmei, L. Yan, and M. Xurming: Magnetism of Fe-doped TiO2 milled in different milling atmospheres. Physica B 403(13), 2193 (2008).

    Google Scholar 

  44. 44.

    J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    D. Heiman, P.A. Wolff, and J. Warnock: Spin-flip Raman scattering, bound magnetic polaron, and fluctuations in (Cd, Mn)Se. Phys. Rev. B 27(8), 4848 (1983).

    CAS  Article  Google Scholar 

  46. 46.

    S. Zhou, E. Čižmár, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, and H. Schmidt: Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B 79, 113201 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    M. Venkatesan, C.B. Fitzgerald, and J.M.D. Coey: Thin films: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    L.R. Shah, B. Ali, H. Zhu, W.G. Wang, Y.Q. Song, H.W. Zhang, S.I. Shah, and J.Q. Xiao: Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co-CeO2. J. Phys. Condens. Matter 21(48), 486004 (2009).

    Article  CAS  Google Scholar 

Download references


Research supported by the U.S. National Science Foundation under Grant Nos. DMR-0906608 and DMR-0907007. The authors would like to thank B. A. Assaf for useful conversations and T. Hussey for magnetometry assistance.

Author information



Corresponding authors

Correspondence to Pegah M. Hosseinpour or Laura H. Lewis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hosseinpour, P.M., Panaitescu, E., Heiman, D. et al. Toward tailored functionality of titania nanotube arrays: Interpretation of the magnetic-structural correlations. Journal of Materials Research 28, 1304–1310 (2013).

Download citation