Eu3+, Bi3+ codoped Lu2O3 nanopowders: Synthesis and luminescent properties

Abstract

Eu3+, Bi3+ codoped Lu2O3 powders (Eu = 2.5 at.%, Bi = 0–3.0 at.%) were prepared using the sol–gel method. Fourier transform infrared spectroscopy, x-ray diffraction, and excitation and emission spectra were carried out to characterize the synthesis, structure, and luminescent properties. The excitation spectra show a strong peak at 350–390 nm, corresponding to the Bi3+1S03P1 transition, and the emission spectra present the emission from 5D07FJ (J = 0, 1, 2, 3, 4) level of Eu3+. The intensity of the reddish emission at 612 nm was monitored as a function of the Bi3+ content and showed a light yield increment of ≈400% compared to a monodoped sample at 1.0% at. Bi3+, produced by an energy transfer process from Bi3+ to Eu3+. This was a consequence of the overlapping of the Bi3+3P11S0 emission with the f–f Eu3+ transitions.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

References

  1. 1.

    J.K. Park, S.M. Park, C.H. Kim, H.D. Park, and S.Y. Choi: Photoluminescence properties of the Eu3+ in La2O3. J. Mater. Sci. Lett. 20, 2231 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    D.P. Volanti, I.L.V. Rosa, E.C. Paris, C.A. Paskocimas, P.S. Pizani, P.S. Varela, and E. Longo: The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Opt. Mater. 3, 995 (2009).

    Article  CAS  Google Scholar 

  3. 3.

    W. Badalawa, H. Matsui, T. Osone, N. Hasuike, H. Harima, and H. Tabata: Correlation between structural and luminescent properties of Eu3+-doped ZnO epitaxial layers. J. Appl. Phys. 109, 053502 (2011).

    Article  CAS  Google Scholar 

  4. 4.

    X. Sun, B. Li, L. Song, J. Gong, and L. Zhang: Electrospinning preparation and photophysical properties of one-dimensional (1D) composite nanofibers doped with erbium(III) complexes. J. Lumin. 130, 1343 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    H. Guo, M. Yin, N. Dong, M. Xu, L. Lou, and W. Zhang: Effect of heat-treatment temperature on the luminescent properties of Lu2O3:Eu film prepared by Pechini sol–gel method. Appl. Surf. Sci. 243, 245 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    H. Zhang, J. Chen, and H. Guo: Electrospinning synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers. J. Rare Earths 28, 232 (2010).

    Article  Google Scholar 

  7. 7.

    J. Trojan-Piegza and E. Zych: Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres. J. Phys. Chem. C 114, 4215 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    S.G. Topping and V.K. Sarin: Cvd Lu2O3:Eu coatings for advanced scintillators. Int. J. Refract. Met. Hard Mater 27, 498 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    E. Zych, D. Hrreniak, and W. Strek: Spectroscopic properties of Lu2O3/Eu3+ nanocrystalline powders and sintered ceramics. J. Phys. Chem. B 106, 3805 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, and M. Bettinnelli: Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3. J. Phys. Chem. B 108, 20137 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    C. Brecher, R.H. Bartram, and A. Lempicki: Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow. J. Lumin. 106, 159 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    X. Wu, Y. Liang, R. Chen, M. Liu, and Y. Li: Preparation and photoluminescence properties of Y2O3:Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes. J. Mater. 46, 5581 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    F. Cao, Y. Tian, Y. Chen, L. Xiao, Y. Liu, and L. Li: Preparation and luminescent properties of novel red phosphors for white-light emitting diodes (W-LEDs) application. Mater. Sci. Semicond. Process. 12, 94 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Liu, Y. Yang, G. Qian, Z. Wang, and M. Wang: Energy transfer processes from Tb3+ to Eu3+ in ternary chelate doped in gel glasses via in situ technique. Mater. Sci. Eng., B 137, 74 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    F. Kang, Y. Hu, H. Wu, G. Ju, Z. Mu, and N. Li: Luminescence investigation of Eu3+-Bi3+ co-doped CaMoO4 phosphor. J. Rare Earths 29, 837 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    W. Zhilong, W. Yuhua, Z. Jiachi, and L. Yanghua: The photoluminescence properties of Eu3+, Bi3+ co-doped yttrium oxysulfide phosphor under vacuum ultraviolet excitation. Mater. Res. Bull. 44, 1183 (2009).

    Article  CAS  Google Scholar 

  17. 17.

    W.J. Park, M.K. Jung, and D.H. Yoon: Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation. Sens. Actuators, B 126, 324 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    S. Takeshita, T. Isobe, T. Sawayama, and S. Niikura: Low-temperature wet chemical precipitation of YVO4:Bi3+, Eu3+ nanophosphors via citrate precursors. Prog. Cryst. Growth Charact. Mater. 57, 127 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    X.T. Wei, Y.H. Chen, H.R. Cheng, M. Yin, and W. Xu: Photoluminescence characteristics and energy transfer between Bi3+ and Eu3+ in Gd2O3: Eu3+, Bi3+ nanophosphors. Appl. Phys. B 99, 763 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    A.V. Strel’tsov, V.P. Dmitrienko, T.A. Akmaeva, S.V. Kudryavstev, A.O. Dmitrienko, and K.A. Razumov: The influence of activation of Y2O3 polycrystalline matrices by Bi3+ ions on the luminescence of Y2O3:Eu3+. Inorg. Mater. 45, 889 (2009).

    Article  CAS  Google Scholar 

  21. 21.

    T.S. Chan, C.C. Kang, R.S. Liu, L. Chen, X.N. Liu, J.J. Ding, J. Bao, and C. Gao: Combinatorial study of the optimization of Y2O3:Bi, Eu red phosphors. J. Comb. Chem. 9, 343 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    S. Neeraj, N. Kijima, and A.K. Cheetham: Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln=Y, Gd). Solid State Commun. 131, 65 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    G. Brusatin, G.D. Giustina, M. Guglielmi, M. Casalbomi, P. Prosposito, S. Schutzmann, and G. Roma: Direct pattern of photocurable glycidoxypropyltrimethoxysilane based sol–gel hybrid waveguides for photonic applications. Mater. Sci. Eng. 27, 1022 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    M. Daldosso, J. Sokolnicki, L. Kepinski, J. Legendziewicz, A. Speghini, and M. Bettinelli: Preparation and optical properties of nanocrystalline Lu2O3:Eu3+ phosphors. J. Lumin. 122–123, 858 (2007).

    Article  CAS  Google Scholar 

  25. 25.

    Q. Chen, Y. Shi, A. Li. S. Wang, J. Chen, and J. Shi: A novel co-precipitation synthesis of a new phosphor Lu2O3:Eu3+. J. Eur. Ceram. Soc. 27, 1941 (2007).

    Google Scholar 

  26. 26.

    J.N. Nedelec: Sol-gel processing of nanostructured inorganic scintillating materials. Nanomaterials 1, 1 (2007).

    Google Scholar 

  27. 27.

    D. Hreniak, E. Zych, L. Kepinsky, and W. Strek: Structural and spectroscopic studies of Lu2O3/Eu3+ nanocrystallites embedded in SiO2 sol–gel ceramics. J. Phys. Chem. Sol. 64, 111 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Jung and L. Jun: Sol-gel synthesis of nanocrystalline Yb3+∕Ho3+-doped Lu2O3 as an efficient green phosphor. J. Electrochem. Soc. 157, K273 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    B. Ksapabutr, E. Gulari, and S. Wongkasemjit: One-pot synthesis and characterization of novel sodium tris(glyco zirconate) and cerium glycolate precursors and their pyrolysis. Mater. Chem. Phys. 83, 34 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Chi and S. Chuang: Infrared and TPD studies of nitrates adsorbed on Tb4O7, La2O3, BaO, and MgO/γ-Al2O3. J. Phys. Chem. B 104, 4673 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    N.T. McDevitt and W.L. Baun: Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim. Acta 20, 799 (1964).

    CAS  Article  Google Scholar 

  32. 32.

    H. Zhang, Q. Yang, S. Lu, and Z. Shi: Structural and spectroscopic characterization of Yb3+ doped Lu2O3 transparent ceramics. Opt. Mater. 34, 969 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    N.L. Wang, X.Y. Zhang, and P.H. Wang: Fabrication and spectroscopic characterization of Er3+:Lu2O3 transparent ceramics. Mater. Lett. 94, 5 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading MA, 1978), p. 99.

    Google Scholar 

  35. 35.

    X.J. Liu, H.L. Li, R.J. Xie, N. Hirosaki, X. Xu, and L.P. Huang: Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. J. Lumin. 127, 469 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    Z. Wang, W. Zhang, L. Lin. Y. Baogui, Y. Yibing, and Y. Min: Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. Opt. Mater. 30, 1484 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    S. Takeshita, T. Isoha, T. Sawayama, and S. Nikura: Effects of the homogeneous Bi3+ doping process on photoluminescence properties of YVO4:Bi3+, Eu3+ nanophosphor. J. Lumin. 129, 1067 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    F. Real, V. Vallet, J.P. Flament, and J. Schamps: Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi3+-doped Y2O3. J. Chem. Phys. 127, 104705 (2007).

    Article  CAS  Google Scholar 

  39. 39.

    L.G. Jacobsohn, M.W. Blair, S.C. Tornga, L.O. Brown, B.L. Bennett, and R.E. Muenchansen: Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence. J. Appl. Phys. 104, 124303 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    N. Dhananjay, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, B. Rudraswamy, N. Suriyamurthy, C. Shivakumara, and R.P.S. Chakradhar: Synthesis, characterization, thermo- and photoluminescence properties of Bi3+ co-doped Gd2O3:Eu3+ nanophosphors. Appl. Phys. B 170, 503 (2012).

    Article  CAS  Google Scholar 

  41. 41.

    V. Yulia, V. Yermolayeva, A.V. Tolmachev, M.V. Dobrotvorskaya, and O.M. Vovk: Preparation and structural properties of Lu2O3:Eu3+ submicrometer spherical phosphors. J. Alloys Compd. 509, 5320 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    G. Phaomei, W.R. Singh, N.S. Singh, and R.S. Ningthoujam: Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J. Lumin. 34, 649 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the SEP-CONACYT projects 100764, 136219 and 178817.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Margarita García Hernández.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramírez, A.M., García Hernández, M., Yepez Ávila, J. et al. Eu3+, Bi3+ codoped Lu2O3 nanopowders: Synthesis and luminescent properties. Journal of Materials Research 28, 1365–1371 (2013). https://doi.org/10.1557/jmr.2013.91

Download citation