Pulsed laser de wetting of Au films: Experiments and modeling of nanoscale behavior

Abstract

Ultrathin metal film dewetting continues to grow in interest as a simple means to make nano structures with well-defined properties. Here, we explored the quantitative thickness-dependent dewetting behavior of Au films under nanosecond (ns) pulsed laser melting on glass substrates. The trend in particle spacing and diameter in the thickness range of 3-16 nm was consistent with predictions of the classical spinodal dewetting theory. The early stage dewetting morphology of Au changed from bicontinuous-type to hole-like at a thickness between 8.5 and 10 nm, and computational modeling of nonlinear dewetting dynamics also captured the bicontinuous morphology and its evolution quite well. The thermal gradient forces were found to be significantly weaker than dispersive forces in Au due to its large effective Hamaker coefficient. This also resulted in Au dewetting length scales being significantly smaller than those of other metals such as Ag and Co.

This is a preview of subscription content, access via your institution.

FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.

References

  1. 1.

    S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and S. Schlagowski: Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, and R. Sureshkumar: Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 101, 017802 (2008).

    Article  CAS  Google Scholar 

  3. 3.

    J. Ye and C.V. Thompson: Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23, 1567 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    D.G.C. Xiaoyuan Hu and R.S. Averback: Nanoscale pattern formation in pt thin films due to ion-beam-induced dewetting. Appl. Phys. Lett. 76, 3215 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Wu, J.D. Fowlkes, P.D. Rack, J.A. Diez, and L. Kondic: On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: Competing liquid-phase instability and transport mechanisms. Langmuir 26, 11972 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    C. Favazza, J. Trice, A. Gangopadhyay, H. Garcia, R. Sureshkumar, and R. Kalyanaraman: Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater. 35, 1618 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    A. Sharma and R. Khanna: Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    R. Seemann, S. Herminghaus, and K. Jacobs: Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 13, 4925 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    G. Reiter: Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75 (1992).

    CAS  Article  Google Scholar 

  10. 10.

    A. Vrij and J.T.G. Overbeek: Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc. 90, 3074 (1968).

    CAS  Article  Google Scholar 

  11. 11.

    A. Vrij: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23 (1966).

    Article  Google Scholar 

  12. 12.

    H. Krishna, C. Favazza, A. Gangopadhyay, and R. Kalyanaraman: Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 37 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, and R. Kalyanaraman: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman: Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 75, 235439 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer: Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    C. Favazza, R. Kalyanaraman, and R. Sureshkumar: Robust nanopatterning by laser-induced dewetting of metal nano films. Nanotechnology 7, 4229 (2006).

    Article  CAS  Google Scholar 

  17. 17.

    S.J. Henley, J.D. Carey, and S.R.P. Silva: Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005).

    Article  CAS  Google Scholar 

  18. 18.

    H. Krishna, J. Strader, A.K. Gangopadhyay, and R. Kalyanaraman: Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy. J. Magn. Magn. Mater. 323, 356 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    H. Krishna, C. Miller, L. Longstreth-Spoor, Z. Nussinov, A.K. Gangopadhyay, and R. Kalyanaraman: Unusual size-dependent magnetization in near hemispherical co nanomagnets on SiO2 from fast pulsed laser processing. J. Appl. Phys. 103, 073902 (2008).

    Article  CAS  Google Scholar 

  20. 20.

    C. Favazza, R. Kalyanaraman, and R. Sureshkumar: Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    M. Khenner, S. Yadavali, and R. Kalyanaraman: Formation of organized nanostructures from unstable bilayers of thin metallic liquids. Phys. Fluids 23, 122105 (2011).

    Article  CAS  Google Scholar 

  22. 22.

    J.D. Fowlkes, L. Kondic, J. Diez, Y. Wu, and P.D. Rack: Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11, 2478 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    M. Khenner, S. Yadavali, and R. Kalyanaraman: Controlling nanoparticles formation in molten metallic bilayers by pulsed-laser interference heating. Math. Model. Nat. Phenom. 7, 20 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    J. Wu, W. Shi, and N. Chopra: Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth. J. Phys. Chem. C 116, 12861 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi: Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 6, 2642 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    M.-C. Daniel and D. Astruc: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    R. Marie, A. Dahlin, J. Tegenfeldt, and F. Höök: Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases 2, 49 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    R. Brown and M. Milton: Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    A. Wei, B. Kim, B. Sadtler, and S. Tripp: Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. Chem. Phys. Chem. 2, 743 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    A. Shipway, E. Katz, and I. Willner: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    B. Ankamwar, M. Chaudhary, and M. Sastry: Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Chem. 35, 19 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp: SERS: A versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada: Surface-enhanced nonresonance Raman scattering from size-and morphology-controlled gold nanoparticle films. J. Phys. Chem. B 108, 11660 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    T.A. Taton, C.A. Mirkin, and R.L. Letsinger: Scanometric dna array detection with nanoparticle probes. Science 289, 1757 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    R. Elghanian, J.J. Storho, R.C. Mucic, R.L. Letsinger, and C.A. Mirkin: Selective colori-metric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    N. Shirato, J. Strader, A. Kumar, A. Vincent, P. Zhang, A. Karakoti, P. Nacchimuthu, H. Cho, S. Seal, and R. Kalyanaraman: Thickness dependent self-limiting 1-d tin oxide nanowire arrays by nanosecond pulsed laser irradiation. Nanoscale 3, 1090 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    P-G. de Gennes, F. Brochard-Wyart, and D. Quere: Capillarity and Wetting Phenomenon (Springer, New York, 2003).

    Google Scholar 

  38. 38.

    T. Stange and D. Evans: Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13, 4459 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    J. Israelachvili: Intermolecular and Surface Forces (Academic Press, London, UK, 1992).

    Google Scholar 

  40. 40.

    C. Argento and R.H. French: Parametric tip model and force-distance relation for Hamaker constant determination from atomic force microscopy. J. Appl. Phys. 80, 6081 (1996).

    CAS  Article  Google Scholar 

  41. 41.

    H. Lu and Q. Jiang: Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109, 15463 (2005).

    CAS  Article  Google Scholar 

  42. 42.

    S. Yadavali, H. Krishna, and R. Kalyanaraman: Morphology transitions in bilayer spinodal dewetting systems. Phys. Rev. B 85, 235446 (2012).

    Article  CAS  Google Scholar 

  43. 43.

    N. Shirato, H. Krishna, and R. Kalyanaraman: Thermodynamic model for the dewetting instability in ultrathin films. J. Appl. Phys. 108, 024313 (2010).

    Article  CAS  Google Scholar 

  44. 44.

    H. Krishna, N. Shirato, C. Favazza, and R. Kalyanaraman: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    D. Linde: The CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  46. 46.

    F.C. Nix and D. MacNair: The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597 (1941).

    CAS  Article  Google Scholar 

  47. 47.

    C.Y. Ho, R.W. Powell, and P.E. Liley: Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279 (1972).

    CAS  Article  Google Scholar 

  48. 48.

    L.B. Pankratz and R.V. Mrazek: Thermodynamic Properties of Elements and Oxides (U.S. Dept. of the Interior, Bureau of Mines, Washington, DC, 1983).

    Google Scholar 

Download references

Acknowledgments

Some of the authors (SY and RK) acknowledge the support by the Sustainable Energy Education and Research Center, TNSCORE, and NSF through Grant No. CMMI-0855949. M.K. acknowledges the support of WKU Faculty Scholarship Council via Grant Nos. 10-7016 and 10-7054, and the Perm Ministry of Education (Russia) Grant No. C-26/628.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yadavali, S., Khenner, M. & Kalyanaraman, R. Pulsed laser de wetting of Au films: Experiments and modeling of nanoscale behavior. Journal of Materials Research 28, 1715–1723 (2013). https://doi.org/10.1557/jmr.2013.90

Download citation