Characterization of interface quality between various low-temperature oxides and Si using room-temperature-photoluminescence and Raman spectroscopy

Abstract

The quality of interface between ultrathin silicon dioxide films and their silicon (Si) wafers was characterized using room-temperature photoluminescence (RTPL) and Raman spectroscopy. Three types of low-temperature (350 °C or room temperature) oxide films on Si grown by different techniques were measured and compared with Si wafers having native oxide and high-temperature thermally grown oxide films. Significant RTPL spectra and intensity variations were measured among low-temperature oxide films. Very strong excitation wave length dependence of RTPL spectra and intensity was observed from the low-temperature oxide films on Si whereas the RTPL spectra and intensity from Si with native oxide and thermally grown oxide films were consistent. Stress in the Si lattice, with different low-temperature oxide layers, showed noticeable differences depending on the oxidation technique used. Key device performance parameters of image sensor devices fabricated using three different low-temperature oxide films showed good correlation with the RTPL and Raman measurement results. The RTPL spectra and Raman shifts are very sensitive to the quality of the oxide/Si interface and can be used as an interface quality monitoring technique.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

References

  1. 1.

    K.K. Ng: Complete Guide to Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 2002). Chap. 22.

    Google Scholar 

  2. 2.

    E.H. Nicollian and J.R. Brews: MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, New York, 1982). Chap. 1.

    Google Scholar 

  3. 3.

    L.K. Wang, D.S. Wen, A.A. Bright, T.N. Nguyen, and W. Chang: Characteristics of CMOS devices fabricated using high quality thin PECVD gate oxide. IEDM’ 89 Technical Digest, Washington, D.C., 1989, p. 463.

    Google Scholar 

  4. 4.

    D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J.W. Gerlach, A. Stesmans, M. Jivanescu, U. Müller, J. Vogt, H. Hilmer, P. Löper, M. Künle, F. Munnik, K. Nielsch, M. Zacharias, M.P. Brown, and K. Austin: Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties. J. Appl. Phys. 107, 064314 (2010).

    Article  Google Scholar 

  5. 5.

    M. Tajima, M. Ikebe, Y. Ohshita, and A. Ogura: Photoluminescence analysis of iron contamination effect in multicrystalline silicon wafers for solar cells. J. Electron. Mater. 39(6), 747 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    D.K. Schroder: Semiconductor Material and Device Characterization, 3rd ed. (Wiley Interscience, New Jersey, 2006). Chap. 10.

    Google Scholar 

  7. 7.

    T. Konishi, T. Yao, M. Tajima, H. Ohshima, H. Ito, and T. Hattori: Characterization of HF-treated Si surfaces by photoluminescence spectroscopy. Jpn. Appl. Phys. 31, L1216 (1992).

    CAS  Article  Google Scholar 

  8. 8.

    D.H. Baek, S.B. Kim, and D.K. Schroder: Epitaxial silicon minority carrier diffusion length by photoluminescence. J. Appl. Phys. 104, 054503 (2008).

    Article  Google Scholar 

  9. 9.

    S. Takashima, M. Yoshimoto, and W.S. Yoo: Photoluminescence study on ion implanted silicon after rapid thermal annealing. ECS Trans. 19(1), 147 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    W.S. Yoo, T. Ueda, T. Ishigaki, and K. Kang: Multi-wavelength Raman and photoluminescence characterization of implanted silicon before and after rapid thermal annealing. Ion implantation technology. AIP Conf. Proc. 1321, 204 (2010).

    CAS  Google Scholar 

  11. 11.

    W.S. Yoo, T. Ueda, T. Ishigaki, K. Kang, M. Fukumoto, N. Hasuike, H. Harima, and M. Yoshimoto: Non-contact and non-destructive characterization alternatives of ultra-shallow implanted silicon PN junctions by multi-wavelength Raman and photoluminescence spectroscopy. J. Electrochem. Soc. 158(1), H80 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    W.S. Yoo, T. Ueda, T. Ishigaki, K. Kang, K.B. Rouh, C.H. Kim, and Y.S. Eun: Multi-wavelength Raman and photoluminescence characterization of implanted n+/p junctions under various rapid thermal annealing conditions. AIP Conf. Proc. 1496, 159 (2012).

    Google Scholar 

  13. 13.

    I. De Wolf: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139 (1996).

    Article  Google Scholar 

  14. 14.

    I. De Wolf: Raman spectroscopy about chips and stress. Spectrosc. Eur. 15/2, 6 (2003).

    Google Scholar 

  15. 15.

    W.S. Yoo, T. Fukada, H. Kuribayashi, H. Kitayama, N. Takahashi, K. Enjoji, and K. Sunohara: Single wafer furnace and its thermal processing applications. Jpn. J. Appl. Phys. Lett. 39(7A), L694 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    W.S. Yoo, T. Fukada, H. Kuribayashi, H. Kitayama, N. Takahashi, K. Enjoji, and K. Sunohara: Design of single-wafer furnace and its rapid thermal processing applications. Jpn. J. Appl. Phys. 39, 6143 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    W.S. Yoo, K. Kang, T. Ueda, and T. Ishigaki: Design of multi-wavelength micro Raman spectroscopy system and its semiconductor stress depth profiling applications. Appl. Phys. Exp. 2, 116502 (2009).

    Article  Google Scholar 

  18. 18.

    A.D. Trigg, L.H. Yu, C.K. Cheng, R. Kumar, D.L. Kwong, T. Ueda, T. Ishigaki, K. Kang, and W.S. Yoo: Three dimensional stress mapping of silicon surrounded by copper filled through silicon vias using polychromator-based multi-wavelength micro Raman spectroscopy. Appl. Phys. Exp. 3, 086601 (2010).

    Article  Google Scholar 

  19. 19.

    J. Gambino, D. Vanslette, B. Webb, C. Luce, T. Ueda, T. Ishigaki, K. Kang, and W.S. Yoo: Stress characterization of tungsten-filled through silicon via arrays using very high resolution multi-wavelength Raman spectroscopy. ECS Trans. 35(2), 105 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    W. Yoo, T. Ishigaki, T. Ueda, J. Kajiwara, K. Kang, P.Y. Hung, K.W. Ang, and B.G. Min: Characterization of strain-engineered Si:C epitaxial layers on Si substrates. ECS Trans. 45(6), 23 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    M. Bigas, E. Cabruja, J. Forest, and J. Salvi, Review of CMOS image sensors. Microelectron. J. 37, 433 (2006).

    Article  Google Scholar 

  22. 22.

    A.J.P. Theuwissen: CMOS image sensors: State-of-the-art. Solid State Electron. 52, 1401 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    W.C. McColgin, J.P. Lavine, and C.V. Stancampiano: Self-analysis of CCD image sensors using dark current spectroscopy. 1993 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Waterloo, Ontario, Canada, 1993.

    Google Scholar 

  24. 24.

    W.C. McColgin, J.P. Lavine, and C.V. Stancampiano: Dark current spectroscopy of metals in silicon. Mat. Res. Soc. Symp. Proc. 442, 187 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    E.A.G. Webster, R. Nicol, L. Grant, and D. Renshaw: Validated dark current spectroscopy on a per-pixel base in CMOS image sensors. Proceedings of the International Image Sensor Workshop (IISW), Bergen (Norway), 26–28 July, 2009.

    Google Scholar 

  26. 26.

    E.A.G. Webster, R. Nicol, L. Grant, and D. Renshaw: Per-pixel dark current spectroscopy measurement and analysis in CMOS image sensors. IEEE Trans. Electron. Devices 57(9), 2176 (2010).

    Article  Google Scholar 

  27. 27.

    K.K. Hung, P.K. Ko, C. Hu, and Y.C. Cheng: Random telegraph noise of deep-submicrometer MOSFET’s. IEEE Electron. Device Lett. 11(2), 90 (1990).

    Article  Google Scholar 

  28. 28.

    N. Tega, H. Miki, F. Pagette, D.J. Frank, A. Ray, M.J. Rooks, W. Haensch, and K. Torii: Increasing threshold voltage variation due to random telegraph noise in FETs as gate lengths scale to 20 nm. VLSI Technology Symposium, Washington, D.C., 2009, p. 50.

    Google Scholar 

  29. 29.

    S. Realov and K. Shepard: Random telegraph noise in 45-nm CMOS: Analysis using an on-chip test and measurement system. IEDM Tech. Dig. 2010, p. 624.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Woo Sik Yoo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang Jian, SK., Jeng, CC., Wang, TC. et al. Characterization of interface quality between various low-temperature oxides and Si using room-temperature-photoluminescence and Raman spectroscopy. Journal of Materials Research 28, 1269–1277 (2013). https://doi.org/10.1557/jmr.2013.78

Download citation